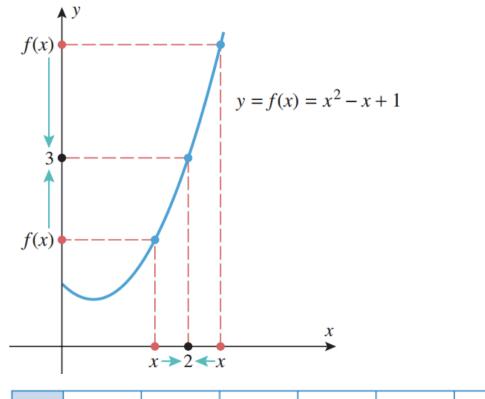
What approaches can we use to estimate limits?

Quick Check

Look at the graph of
$$f(x)=rac{x^2-1}{x-1}$$


What happens when x = 1? What happens when x is near 1?

What happens to f(x) when x is near 1?

In other words,

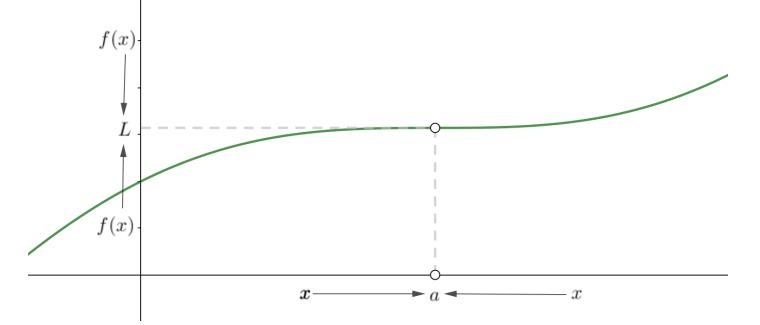
$$\lim_{x\to 1}\frac{x^2-1}{x-1}$$

NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP	NORMAL FLOAT AUTO REAL RADIAN MP					
Plot1 Plot2 Plot3	Т	X Y1					
$x^{2}-1$	Ē	0.5 1.5 0.6 1.6					
$\mathbf{N}Y_1 \blacksquare \mathbf{D} \frac{X^2 - 1}{X - 1}$	÷	0.7 1.7					
	Ē	0.8 1.8 0.9 1.9					
■NY2= ■NY3=		1 ERROR					
NY 4 =	Ē	1.1 2.1 1.2 2.2					
NY 5 =	‡	1.3 2.3					
NY 6 =	Ē	1.4 2.4 1.5 2.5					
NY7=	±						
	X=1.5						

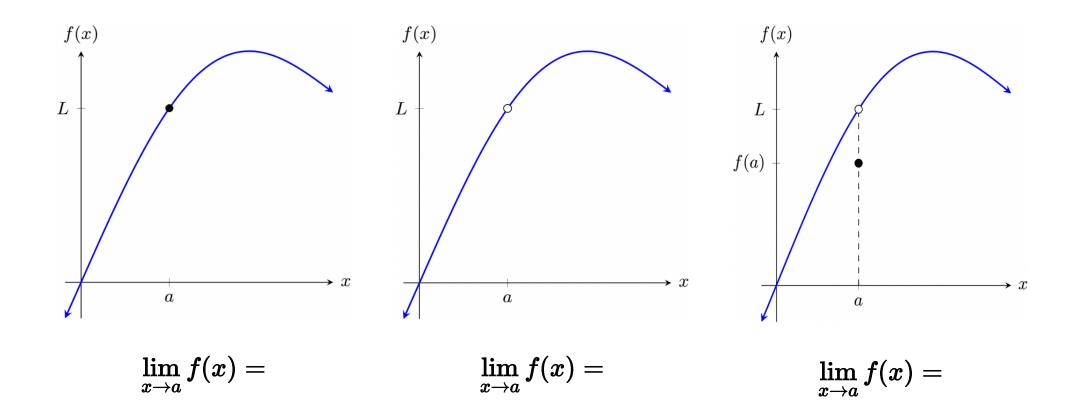
$$\lim_{x\to 2}(x^2-x+1)=3$$

The limit of f(x) as x approaches 2 from both sides is 3.

	x	1.0	1.5	1.9	1.95	1.99	1.995	1.999	2	2.001	2.005	2.01	2.05	2.1	2.5	3.0
ſ	f(x)	1.000000	1.750000	2.710000	2.852500	2.970100	2.985025	2.997001		3.003001	3.015025	3.030100	3.152500	3.310000	4.750000	7.000000
	Left side											Right side				

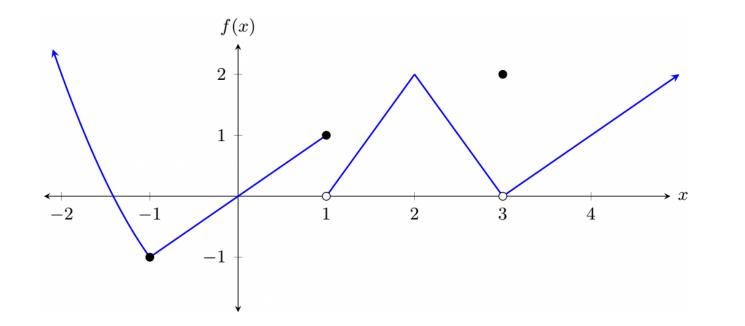

Definition

We write

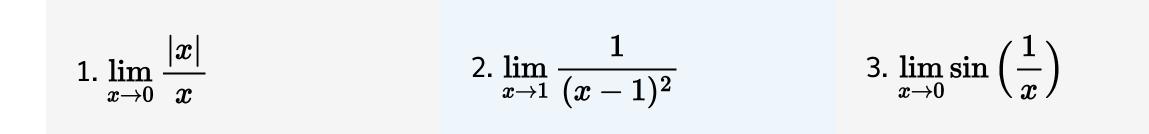

$$\lim_{x o a} f(x) = L$$

and say "the limit of f(x), as x approaches a, equals L"

if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.



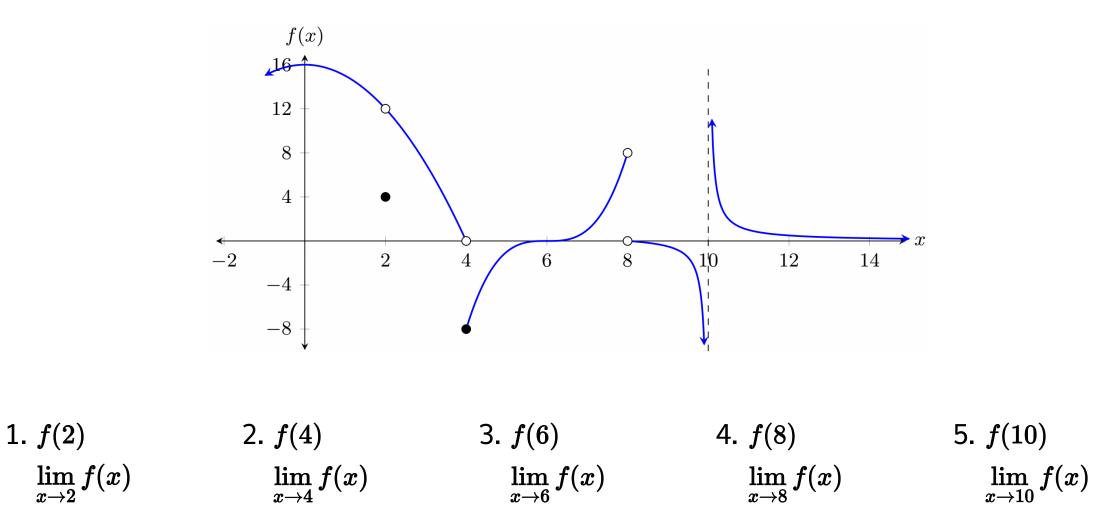
primethinker.com


primethinker.com

Use the graph to find each limit, if it exists.

 $1. \quad \lim_{x \to -1} f(x) \quad 2. \quad \lim_{x \to 1} f(x) \quad 3. \quad \lim_{x \to 2} f(x) \quad 4. \quad \lim_{x \to 3} f(x) \quad 5. \quad \lim_{x \to 4} f(x)$

In what ways can a limit fail to exist?


Summary of common behaviors of a function associated with nonexistence of a limit

$\lim_{x ightarrow a}f(x)$

Does Not Exist because...

- 1. f(x) approaches a different number from the right side of a than it approaches from the left side of a.
- 2. f(x) increases or decreases without bound as x approaches a.
- 3. f(x) oscillates between two fixed values as x approaches a.

Find the following limits or explain why they don't exist.

A question of equality

1. What is wrong with the following equation?

$$\frac{x^2+x-6}{x-2}=x+3$$

2. Keeping part (1) in mind, explain why the following is correct.

$$\lim_{x o 2} rac{x^2 + x - 6}{x - 2} = \lim_{x o 2} (x + 3)$$