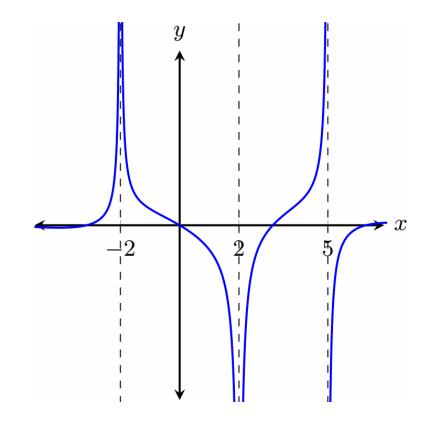
What sort of behavior does an infinite limit indicate for a function?

Quick Check

Draw sketches of functions to showcase various possibilites under which $\lim_{x \to a} f(x)$ does not exist. Each sketch should focus on one case.

Infinite Limit

A limit in which f(x) increases or decreases without bound as x approaces a.



Describe the function behavior for each limit.

$$\lim_{x o 5^-} f(x) \ \lim_{x o 5^+} f(x)$$

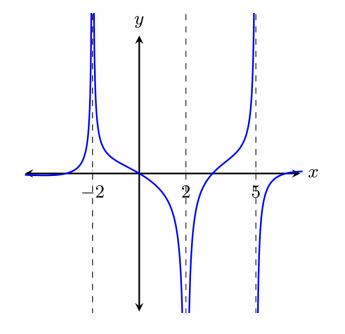
- /

 $\lim_{x
ightarrow 5}f(x)$

\blacksquare Is ∞ a number? Why are we using this symbol?

$$\lim_{x o a}f(x)=\infty$$

This does NOT mean that we are regarding ∞ or $-\infty$ as a number. Nor does it mean that the limit exists. We are using ∞ or $-\infty$ to indicate unbounded behavior.



Find each limit.

 $\lim_{x
ightarrow -2^{-}}f(x) \qquad \qquad \lim_{x
ightarrow 2^{-}}f(x)$

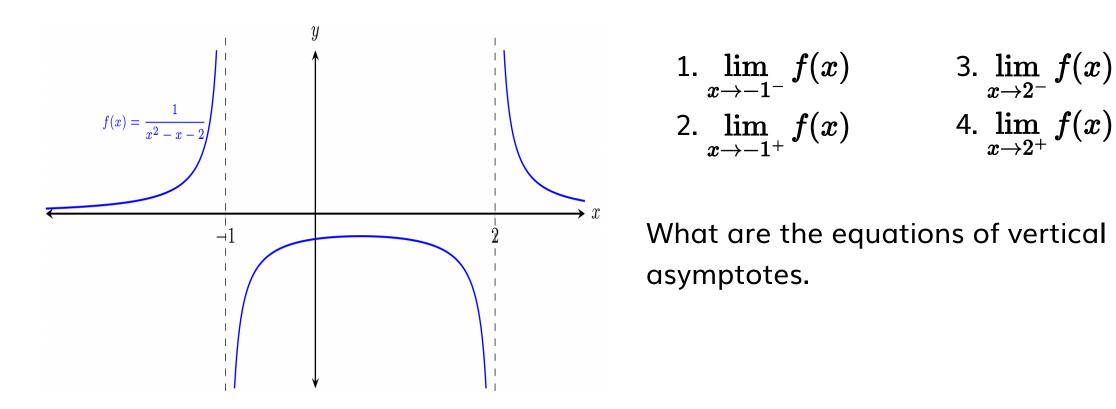
 $\lim_{x
ightarrow -2^+}f(x)$

 $\lim_{x
ightarrow -2}f(x)$

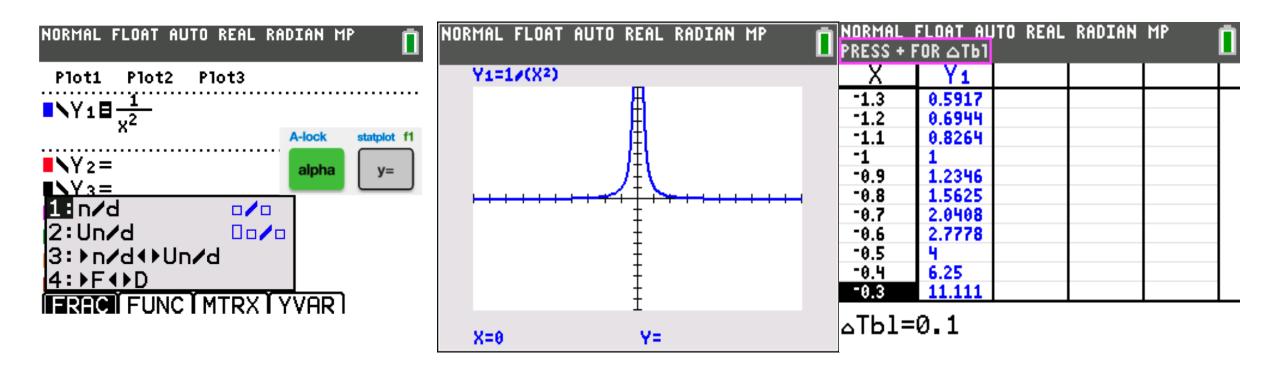
 $\lim_{x
ightarrow 2^+}f(x)$

Infinite Limits indicate vertical asymptotes

A vertical line x = a is called a vertical asymptote if f(x) approaces infinity or negative infinity as $x \to a$ from the right or the left or both.



Q Unbounded Behavior. Why? And big number challenge.



What is the connection between vertical asymptotes and denominators of functions?

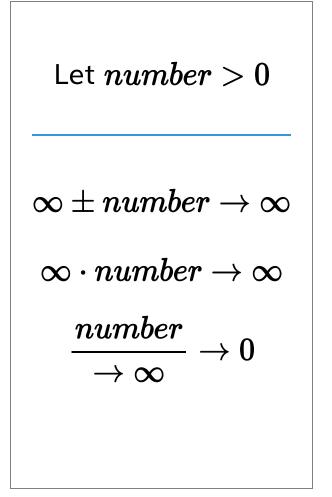
Identify vertical asymptotes without a graph

1.
$$f(x) = rac{5}{x-2}$$
 2. $f(x) = rac{x^2+2x-8}{x^2-4}$ 3. $f(x) = \cot(x)$

Determining infinite limits

$$1. \lim_{x \to 1^+} \frac{2+x}{1-x} \qquad \qquad 2. \lim_{x \to 2^+} \frac{5}{(x-2)^3} \qquad \qquad 3. \lim_{x \to 3^-} \frac{x^2}{(x^2-9)}$$

${f egin{array}{ll} {f eta} \end{array}}$ Remember ${f \infty}$ is a shorthand notation



Find each limit (if it exists).

 $x^{\hat{2}}$

 $x \rightarrow 3$