## What sort of behavior does an infinite limit indicate for a function?

## Quick Check

Draw sketches of functions to showcase various possibilites under which $\lim _{x \rightarrow a} f(x)$ does not exist. Each sketch should focus on one case.

## Infinite Limit

A limit in which $f(x)$ increases or decreases without bound as $x$ approaces $a$.


Describe the function behavior for each limit.
$\lim _{x \rightarrow 5^{-}} f(x)$
$\lim _{x \rightarrow 5^{+}} f(x)$
$\lim _{x \rightarrow 5} f(x)$

## ! Is $\infty$ a number? Why are we using this symbol?

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

This does NOT mean that we are regarding $\infty$ or $-\infty$ as a number. Nor does it mean that the limit exists. We are using $\infty$ or $-\infty$ to indicate unbounded behavior.


Find each limit.

$$
\begin{array}{ll}
\lim _{x \rightarrow-2^{-}} f(x) & \lim _{x \rightarrow 2^{-}} f(x) \\
\lim _{x \rightarrow-2^{+}} f(x) & \lim _{x \rightarrow 2^{+}} f(x) \\
\lim _{x \rightarrow-2} f(x) & \lim _{x \rightarrow 2} f(x)
\end{array}
$$

## Infinite Limits indicate vertical asymptotes

A vertical line $x=a$ is called a vertical asymptote if $f(x)$ approaces infinity or negative infinity as $x \rightarrow a$ from the right or the left or both.



What are the equations of vertical asymptotes.Unbounded Behavior. Why? And big number challenge.


What is the connection between vertical asymptotes and denominators of functions?

## Identify vertical asymptotes without a graph

1. $f(x)=\frac{5}{x-2}$
2. $f(x)=\frac{x^{2}+2 x-8}{x^{2}-4}$
3. $f(x)=\cot (x)$

## Determining infinite limits

1. $\lim _{x \rightarrow 1^{+}} \frac{2+x}{1-x}$
2. $\lim _{x \rightarrow 2^{+}} \frac{5}{(x-2)^{3}}$
3. $\lim _{x \rightarrow 3^{-}} \frac{x^{2}}{\left(x^{2}-9\right)}$

## Remember $\infty$ is a shorthand notation



Find each limit (if it exists).

1. $\lim _{x \rightarrow 0^{-}} x^{2}-\frac{1}{x}$
2. $\lim _{x \rightarrow \pi^{-}} \frac{9999999999999999999}{\csc (x)}$
3. $\lim _{x \rightarrow 0^{+}} 3 \cdot \cot (x)$
4. $\lim _{x \rightarrow 3} \frac{x-2}{x^{2}}$
