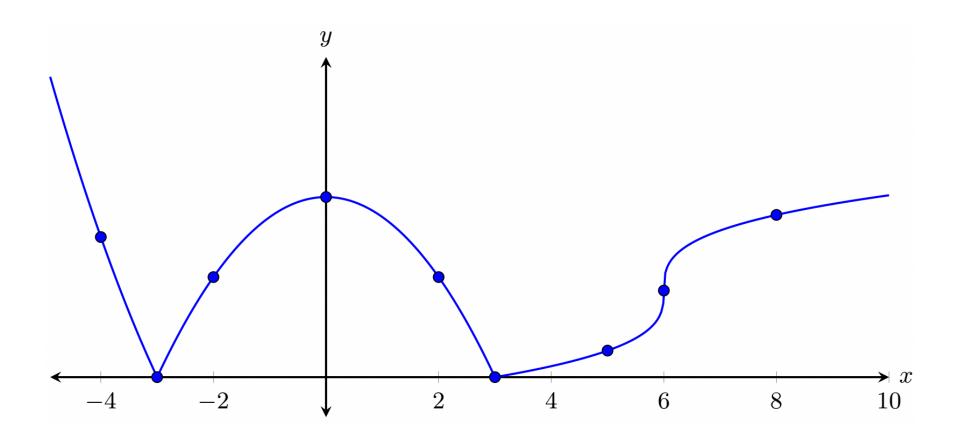
What is meant by "slope of the curve at the given point"?

Quick Check

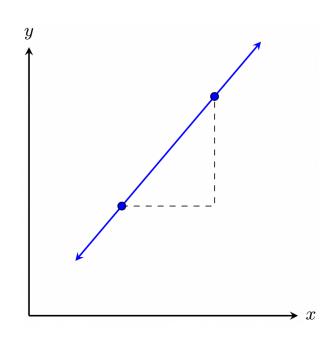
- 1. Explain how you could find the equation of the line tangent to the circle $x^2+y^2=169$ at the point (5,12). Start by drawing out the circle, the point, and the tangent at that point.
- 2. Write down your definition of a tangent line?

Draw a tangent line to the curve at the given point(s).



Q Did your written definition of a tangent work in the context of general curves? Explain.

Equation of a line



A line is defined by 2 points.

To write the equation of a line we need:

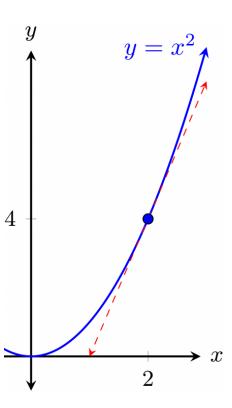
2 Points

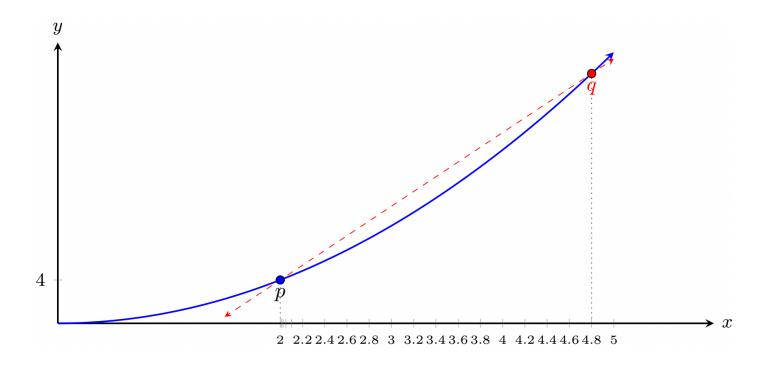
OR

Point + Slope

Point-Slope Form of the equation of the line: $y-y_1=m\cdot(x-x_1)$

The Tangent Problem





Approximate slope of the tangent line through the given point with slope of a secant line. Make the approximation better by finding the secant slope on a smaller and smaller interval.

Secant to Tangent

$$m_{secant} = rac{\Delta y}{\Delta x}$$

Interval p to q

$$2 - 5$$

$$2-5$$
 $2-4.8$

$$2 - 2.09$$

Secant Slope

Difference Quotient

$$\frac{f(5)-f(2)}{5-2}$$

$$\frac{f(4.8) - f(2)}{4.8 - 2}$$

$$\frac{f(2.09)-f(2)}{2.09-2}$$

We ask what slope value would we get if the interval were to get infinitely small.

Geogebra - The Tangent Problem Animation

Slope of the curve

The slope $m_{tangent}$ of the tangent line to y=f(x) at a point $ig(x_0,f(x_0)ig)$ is given by

$$m_{tangent} = \lim_{h o 0} rac{f(x_0 + h) - f(x_0)}{h}$$

provided this limit exists.

 $\ref{Signature}$ What if this limit is an infinite limit (= $\pm \infty$)?

Test the formula with a simple case

Find the slope of the graph of f(x)=3x+1 at the point (2,7).

Test the reasonableness of your answer against a graph

1. Find the slopes of tangent line to the graph of $f(x)=x^2+4x$ at $x=0,2,\mathrm{and}\ 4.$

2. Find the expression that provides the slopes of the curve $y=\dfrac{1}{x}$ at any point $x=a\neq 0$. Then, find the x-value where slope of the curve is $\dfrac{1}{4}$.

8