What are the interpretations of the limit of the difference quotient?

Quick Check

For the function shown in the sketch, give the intervals or points on the x-axis where the slope of the curve is

1. Positive
2. Negative
3. Zero

Derivative

The following are all interpretations for the limit of the difference quotient at the point $\left(x_{0}, f\left(x_{0}\right)\right)$

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

1. Slope of the graph of $y=f(x)$ at the point on the graph.
2. Slope of the tangent line to the curve $y=f(x)$ at the point.
3. Instantaneous rate of change of $f(x)$ with respect to x at the point.
4. Derivative $f^{\prime}\left(x_{0}\right)$ at the point.

The Derivative Function

The derivative function gives the slope of the tangent line to the graph of $f(x)$ at the point $(x, f(x))$ provided that the graph has a tangent at this point.

Important Vocabulary

Differentiation is the process of finding the derivative of a function.
A function is differentiable at x if its derivative exists at x and is differentiable on an open interval if its derivative exists at every point in the interval.

$$
f^{\prime}-\text { derivative of the function } f
$$

$f^{\prime}(x)$ - derivative of the function f with respect to x
$h^{\prime}(t)$ - derivative of the function h with respect to t
Notation:

$$
\begin{aligned}
& \frac{d y}{d x} \text { - derivative of } y \text { with respect to } x \\
& \frac{d f}{d t} \text { - derivative of } f \text { with respect to } t
\end{aligned}
$$

Derivative using the limit process

Find the derivative of $f(x)=1-x^{2}$. Use the derivative function to find the slope of the tangent line to $f(x)$ at the points $(-2,3),(0,1)$, and $(1,0)$.

Pascal's Triangle and the Binomial Theorem

Expand $(x+h)^{5}$.

Find $\frac{d f}{d x}$ using the limit process. Use the derivative to find the equation of the tangent line to the graph of f at $(2,8)$.
$f(x)=x^{3}$
i8 Let me graph the function and its tangent. Does the answer pass the visual check?

Find the derivative using the limit process

1. $f(x)=x^{3}+2 x$. Find $f^{\prime}(x)$.
2. $y=\sqrt{x}$. Find $\frac{d y}{d x}$.
3. $h(t)=\frac{4}{t}$. Find $h^{\prime}(t)$. Find and explain the meaning of $h^{\prime}(1)$ and $h^{\prime}(10)$. Sketch to illustrate both.
4. $g(x)=x^{2}+1$. Find $\frac{d g}{d x}$. Sketch the graph of the function and its derivative side by side. On what intervals is $g^{\prime}(x)$ positive or negative? What do you notice about $g(x)$ on the same intervals.
5. $f(x)=\frac{1}{x+1}$. Find the equation of the tangent line to $f(x)$ at the point $(0,1)$.
