What are the interpretations of the limit of the difference quotient?

Quick Check

For the function shown in the sketch, give the intervals or points on the x-axis where the slope of the curve is

- 1. Positive
- 2. Negative
- 3. Zero

primethinker.com

Derivative

The following are all interpretations for the limit of the difference quotient at the point $ig(x_0,f(x_0)ig)$

$$\lim_{h o 0}rac{f(x_0+h)-f(x_0)}{h}$$

- 1. Slope of the graph of y = f(x) at the point on the graph.
- 2. Slope of the tangent line to the curve y=f(x) at the point.
- 3. Instantaneous rate of change of f(x) with respect to x at the point.
- 4. Derivative $f'(x_0)$ at the point.

The Derivative Function

The derivative function gives the slope of the tangent line to the graph of f(x) at the point (x, f(x)) provided that the graph has a tangent at this point.

primethinker.com 7

Important Vocabulary

Differentiation is the process of finding the derivative of a function.

A function is differentiable at x if its derivative exists at x and is differentiable on an open interval if its derivative exists at every point in the interval.

 f^\prime - derivative of the function f

 $f^{\prime}(x)$ - derivative of the function f with respect to x

 $h^\prime(t)$ - derivative of the function h with respect to t

dy

 $\frac{dy}{dx}$ - derivative of y with respect to x

 $rac{df}{dt}$ - derivative of f with respect to t

Notation:

Derivative using the limit process

Find the derivative of $f(x) = 1 - x^2$. Use the derivative function to find the slope of the tangent line to f(x) at the points (-2,3), (0,1), and (1,0).

primethinker.com

Pascal's Triangle and the Binomial Theorem

$$(a+b)^0=1$$
 $(a+b)^1=a+b$
 $(a+b)^2=1a^2+2ab+1b^2$
 $(a+b)^3=1a^3+3a^2b+3ab^2+b^3$
 $(a+b)^4=1a^4+4a^3b+6a^2b^2+4ab^3+b^4$
 $(a+b)^5=\dots$
 $(a+b)^6=\dots$

Expand $(x+h)^5$.

Find $\frac{df}{dx}$ using the limit process. Use the derivative to find the equation of the tangent line to the graph of f at (2,8).

$$f(x) = x^3$$

E Let me graph the function and its tangent. Does the answer pass the visual check?

Find the derivative using the limit process

- 1. $f(x) = x^3 + 2x$. Find f'(x).
- 2. $y = \sqrt{x}$. Find $\frac{dy}{dx}$.
- 3. $h(t)=rac{4}{t}$. Find h'(t). Find and explain the meaning of h'(1) and h'(10). Sketch to illustrate both.
- 4. $g(x)=x^2+1$. Find $\frac{dg}{dx}$. Sketch the graph of the function and its derivative side by side. On what intervals is g'(x) positive or negative? What do you notice about g(x) on the same intervals.
- 5. $f(x) = rac{1}{x+1}$. Find the equation of the tangent line to f(x) at the point (0,1).