Does differentiability imply continuity and vice versa?

Quick Check

- 1. Draw a tangent segment at each highlighted point.
- 2. What information do the tangents/slopes give about f(x)?
- 3. Positive, Negative or Zero ?

Match the graph of each function with the graph of its derivative. Reason?

primethinker.com

When can a function fail to be differentiable?

Recall that we say f(x) is differentiable at some point (x_0,y_0) if $\lim_{h
ightarrow 0}rac{f(x_0+h)-f(x_0)}{h}$

exists at $x = x_0$.

I The function needs to be defined at the point for us to talk about its derivate there. What does this imply for where a function may not be differentiable?

How can a limit... the above limit... fail to exist?

Ways for a function not to be differentiable at a point

Zoooom away - Differentiability and Smoothness

Zoom in at the indicated point on your calculator. What do you notice after after several ZOOM INs?

Visual Understanding

Differentiability and Continuity

If f is differentiable at x = a, then f is continuous at x = a.

! Converse of this is false. That is, if a function is continuous at a point, then it does not necessarily have to be differentiable.

What kind of continuous functions may not be differentiable everywhere?

Visual Check of continuity and differentiablilty on an interval

For each of the functions graphed above, identify the points or intervals where the function is a) Differentiable

- b) Continuous but NOT differentiable
- c) Neither continuous nor differentiable

Make a sketch of a function meeting all of the following conditions.

$$\lim_{x \to 0^{-}} f(x) = 2$$

$$\lim_{x \to 0^{+}} f(x) = -2$$

$$\lim_{x \to 3^{-}} f(x) = \infty$$

$$\lim_{x \to 3^{+}} f(x) = 1$$

$$f(2) = 0$$

$$f(0) \text{ is undefined}$$

$$f(x) \text{ has one point}$$
where it is continuous
but not differentiable