What are the basic differentiation rules?

Quick Check

Use the limit definition of the derivative to find the derivative of each function.

1. $f(x)=c$, where c is a constant.
2. $f(x)=x$
3. $f(x)=x^{n}$, where n is a positive integer. [${ }^{+}+$Binomial Theorem]

Derivative Rules

1. Derivative of a constant function is 0 .

$$
\frac{d}{d x}[c]=0
$$

$$
\frac{d}{d x}[-200]=
$$

2. Derivative of the identity function, $f(x)=x$, is 1 .

$$
\frac{d}{d x}[x]=1
$$

$$
\frac{d}{d t}[t]=
$$

3. Derivative of a power function $f(x)=x^{n}$, where n is a positive integer is $n \cdot x^{n-1}$

$$
\frac{d}{d x}\left[x^{n}\right]=n \cdot x^{n-1}
$$

$$
\frac{d}{d x}\left[x^{8}\right]=
$$

Applying the rules

[1-4] Find the derivative using the differentiation rules.

1. $f(x)=1000$
2. $y=5 \pi$
3. $y=x^{2}$
4. $g(t)=t^{99}$
5. Find the slope of the graph of $y=x^{3}$ at $x=-2, x=0$, and $x=2$.
6. Find an equation of the tangent line to the graph of $f(x)=x^{2}$ at $(-3,9)$.

The Constant Multiple Rule

If c is a constant and f is a differentiable function, then

$$
\frac{d}{d x}[c \cdot f(x)]=c \cdot \frac{d}{d x}[f(x)]
$$

: How can we prove this using the limit process?
Differentiate each function:

1. $y=4 x^{3}$
2. $f(x)=\frac{2 x^{4}}{5}$
3. $A(r)=\pi r^{2}$

The Sum and Difference Rule

If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]
$$

Differentiate each function:

1. $y=x^{3}-4 x^{2}+3$
2. $f(t)=\frac{t^{3}+2 t+2}{5}$
3. $g(x)=\frac{2 x^{2}-x}{x}$

Apply the derivative rules

1. If $y=x^{8}+12 x^{5}-4 x^{4}+10 x^{2}+6 x+1$, find y^{\prime}.
2. Find the points on the curve $y=x^{4}-6 x^{2}+4$ where the tangent line is horizontal.
3. Show that the graph of $f(x)=x^{5}+3 x^{3}+5 x$ does not have a tangent line with a slope of 2.

Derivatives of Sine and Cosine Functions

Recall two special trigonometric limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
$$

Using these and trig identities we can prove the following two derivatives

$$
\frac{d}{d x}[\sin x]=\cos x \quad \frac{d}{d x}[\cos x]=-\sin x
$$

Visual Explanation © Geogebra Animation

Derivatives of functions involving Sine and Cosine functions

1. $y=x-\sin x$
2. $f(x)=3 x+\cos x$
3. $g(t)=\frac{2 \sin x}{3}$
4. Find the equation of the tangent line to $\sin x-\cos x$ at the point $\left(\frac{\pi}{4}, 0\right)$.
5. Prove $\frac{d}{d x}[\cos x]=-\sin x$ using the definition of the derivative.
