How do we find the derivative of a quotient of functions?

Quick Check

A Normal Line through $(a, f(a))$ is perpendicular to the tangent line through the same point on the curve of $f(x)$.

Write the equation of the Normal Line to the graph of $g(x)=5-x^{2}$ passing through the point $(1,3)$.

Does the derivative of a quotient of functions $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]$ work as expected?

Let $f(x)=5 x^{3}$ and $g(x)=x$.

1 Find the derivative of $\frac{f(x)}{g(x)}$ by first simplifying then taking the drivative of the result.

2 Check if the quotient of the derivatives works to achieve the same result or not.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] \stackrel{?}{=} \frac{\frac{d}{d x}[f(x)]}{\frac{d}{d x}[g(x)]}
$$

Simplification by Addition of Zero +0

Let $q(x)=\frac{f(x)}{g(x)}$, then by the definition of the derivative

$$
\begin{aligned}
q^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{q(x+h)-q(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h} \\
& =\ldots
\end{aligned}
$$

The Quotient Rule

The quotient of two differentiable functions, $\frac{f}{g}$, is itself differentiable at all values of x for which $g(x) \neq 0$.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{g(x)^{2}}
$$

djf A yodel to remember

$$
\frac{d}{d x}\left[\frac{h i g h}{l o w}\right]=\frac{\operatorname{lo} d(\mathrm{hi})-\mathrm{hi} d(\mathrm{lo})}{l o . l o}
$$

Derivative of Quotients

Find the derivative using the quotient rule.

1 $f(x)=\frac{x}{1+x^{2}}$
2 Find an equation for the tangent line to the curve $y=\frac{x^{2}+5}{2 x}$ at the point $(5,3)$. Check visually by graphing the function and the tangent line.

The General Power Rule

If n is a negative integer and $x \neq 0$, then

$$
\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}
$$

If n is a negative integer, then $n=-m$, where m is a positive integer. It follows
$x^{n}=x^{-m}=\frac{1}{x^{m}}$, and by quotient rule

$$
\frac{d}{d x}\left(x^{n}\right)=\frac{d}{d x}\left(\frac{1}{x^{m}}\right)=\frac{0-m x^{m-1}}{x^{2 m}}=-m x^{-m-1}=n x^{n-1}
$$

Although, we will prove this later, Power Rule extends to rational exponents as well.

General Power Rule and The Quotient Rule

1 Find the derivative using the Power Rule. Start by rewriting the expression.

$$
g(x)=\frac{x^{3}-3 x^{2}+4}{x^{2}}
$$

2 Find the derivative using both the quotient rule and the general power rule.

$$
y=\frac{5}{2 x^{3}}
$$

More Derivatives

Find the derivative using any method.

1. $y=\frac{1}{\sqrt[3]{x^{2}}}$
2. $g(x)=\frac{\sin x}{x^{2}}$
3. $f(x)=\frac{x^{2}+5 x-1}{x^{2}}$
4. $h(x)=\frac{3 x^{2}-1}{2 x+5}$
5. Find the tangent to Newton's

Serpentine, $y=\frac{4 x}{x^{2}+1}$, at $(-1,-2)$, $(0,0)$, and $(1,2)$.

Notation for Higher-Order Derivatives

First Derivative	y^{\prime}	$f^{\prime}(x)$	$\frac{d y}{d x}$
Second Derivative	$y^{\prime \prime}$	$f^{\prime \prime}(x)$	$\frac{d^{2} y}{d x^{2}}$
Third Derivative	$y^{\prime \prime \prime}$	$f^{\prime \prime \prime}(x)$	$\frac{d^{3} y}{d x^{3}}$
Fourth Derivative	$y^{(4)}$	$f^{(4)}(x)$	$\frac{d^{4} y}{d x^{4}}$
\downarrow	\downarrow	\downarrow	\downarrow
$n^{t h}$ Derivative	$y^{(n)}$	$f^{(n)}(x)$	$\frac{d^{n} y}{d x^{n}}$

Finding Higher Order Derivatives

1. Find the first four derivatives of $y=x^{4}-x^{3}+5 x^{2}+1$.
2. $f^{\prime}(x)=3 x^{2}$, What is $f^{\prime \prime}(x)$.
3. $f^{(3)}(x)=10 x^{2}$, find $f^{(6)}(x)$.
4. Find the second derivative of $y=\frac{x+1}{x}$.
