How can we find the derivatives of trigonometric functions using the

Quotient Rule?

Quick Check

Determine the point(s) at which the graph of the function, $f(x)$, has a horizontal tangent line.

$$
f(x)=x-\sin x+2
$$

Recall the Derivatives of Sine and Cosine Functions

$$
\frac{d}{d x}[\sin x]=\cos x
$$

$$
\frac{d}{d x}[\cos x]=-\sin x
$$

Visual Explanation Geogebra Animation
\$ AND some helpful pythagorean identities.

$$
\sin ^{2} x+\cos ^{2} x=1 \quad 1+\cot ^{2} x=\csc ^{2} x \quad \tan ^{2} x+1=\sec ^{2} x
$$

Basic Trigonometric Derivatives

Recall -9

$$
\tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x} \quad \sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x}
$$

Find each of the following derivatives using the Quotient Rule.

$$
\frac{d}{d x}[\tan x] \quad \frac{d}{d x}[\cot x] \quad \frac{d}{d x}[\sec x] \quad \frac{d}{d x}[\csc x]
$$

Find the derivative.

Examples [1-3]:

1. $y=2+x-\sin x$
2. $f(x)=x^{2} \cdot \tan x$
3. $y=\frac{x}{1+\cos x}$
4. Find the equation of the tangent line to $y=x \sin x$ at $x=\frac{\pi}{2}$.
5. $y=\frac{\sin x}{1-\cos x}$
6. Find the $27^{\text {th }}$ derivative of $y=\cos x$.
7. Find the equation of the normal line to $y=\sin x+\cos x$ at $x=\pi$.
