How can we find the derivatives of trigonometric functions using the Quotient Rule?

Quick Check

Determine the point(s) at which the graph of the function, f(x), has a horizontal tangent line.

$$f(x) = x - \sin x + 2$$

Recall the Derivatives of Sine and Cosine Functions

$$\frac{d}{dx}[\sin x] = \cos x$$

$$rac{d}{dx}[\cos x]=-\sin x$$

 \neq AND some helpful pythagorean identities.

$$\sin^2 x + \cos^2 x = 1$$
 $1 + \cot^2 x = \csc^2 x$ $\tan^2 x + 1 = \sec^2 x$

Basic Trigonometric Derivatives

Recall 🧐

Find each of the following derivatives using the Quotient Rule.

$$\frac{d}{dx}[\tan x] \qquad \qquad \frac{d}{dx}[\cot x] \qquad \qquad \frac{d}{dx}[\sec x] \qquad \qquad \frac{d}{dx}[\csc x]$$

Find the derivative.

Examples [1-3]:

1. $y = 2 + x - \sin x$

2. $f(x) = x^2 \cdot \tan x$

3.
$$y = \frac{x}{1 + \cos x}$$

4. Find the equation of the tangent line to $y = x \sin x$ at $x = \frac{\pi}{2}$. 5. $y = \frac{\sin x}{1 - \cos x}$ 6. Find the 27^{th} derivative of $y = \cos x$. 7. Find the equation of the normal line to $y = \sin x + \cos x$ at $x = \pi$.