How can we find the derivative of a composite function $(f \circ g)$?

Quick Check

Determine whether the statement is true or false. If it is false, explain why or give an example to show that it is false.

1. If $y=f(x) g(x)$, then $\frac{d y}{d x}=f^{\prime}(x) g^{\prime}(x)$.
2. If $f(x)$ is an $n^{t h}$ degree polynomial, then $f^{(n+1)}(x)=0$.
3. If a function is continuous at a point, then it is differentiable at that point.

Factory Operation and Production

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x)) \\
& x \longrightarrow g \longrightarrow \rightarrow f(x) \longrightarrow f(g(x)) \\
& \text { rate of production }
\end{aligned}
$$

The Chain Rule

If f is differentiable at $g(x)$ and g is differentiable at x, then the composite function $(f \circ g)(x)$ is differentiable at x, and

$$
\begin{aligned}
(f \circ g)^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
& =\text { derivative of outside (leave inside alone) } \cdot \text { derivative of inside }
\end{aligned}
$$

Find the derivative.

1. $y=(5 x-2)^{6}$
2. $f(x)=\left(3 x-2 x^{2}\right)^{3}$

More Examples of derivatives using the Chain Rule

Differentiate

1. $g(t)=\frac{10}{(2 t-4)^{3}}$
2. $f(x)=x^{2} \cdot \sqrt{1-x^{2}}$
3. $f(x)=\left(\frac{2 x-1}{x^{2}+1}\right)^{2}$
4. $y=\left(x^{2}-2\right)^{3}\left(2 x^{4}+2\right)^{2}$

Find the derivative of each function.

1. $y=(6 x-5)^{3}$
2. $y=5\left(1-x^{2}\right)^{-4}$
3. $f(x)=x^{2}(x-2)^{4}$
4. $g(t)=\frac{2}{\left(t^{4}+1\right)^{3}}$
5. $h(x)=\left(\frac{x^{2}-2}{2 x+3}\right)^{2}$
6. Find the point(s) on the curve of $f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}$ where the slope is zero or undefined.
