How can we find derivatives of implicitly defined functions?

Quick Check

- 1. Find the point(s) on the graph of the equation $x^2 + y^2 = 25$ whose *x*-coordinate is 4.
- 2. How many points have the x-coordinate equals zero, x = 0, on the graph of the equation $y^4 = y^2 x^2$.
- 3. Find the slope of the tangent line to the graph of the function $f(x) = (2x^3 + 1)^2$ at x = -1.

Implicitly vs Explicitly defined functions

Explicit Form y = 1/x $y = \sqrt{1 - x^2}$ and $y = -\sqrt{1 - x^2}$ \Rightarrow Solve for y

Implicit Form

 $x^2 + y^2 = 1$

 $x^3 + y^3 = 6xy$

xy = 1

Implicitly vs Explicitly defined functions

$$y^2-x+1=0$$
 defines $y=\sqrt{x-1}$ and $y=-\sqrt{x-1}$ implicitly. $[f(x)]^2-x+1=0$ defines $f(x)=\sqrt{x-1}$ and $f(x)=-\sqrt{x-1}$ implicitly.

Implicit Differentiation

$$y = 1/x$$

$$xy - 1 = 0$$

Implicit Differentiation

$$f(x)=\sqrt{x-1}$$
 and $f(x)=-\sqrt{x-1}$

$$[f(x)]^2 - x + 1 = 0$$

primethinker.com

Implicit Differentiation Practice

Find the derivative using implicit differentiation method.

Examples 1. $x^3 - xy + y^2 = 4$ 2. $y^3 + y^2 - 5y - x^2 = -4$ 3. Find $\frac{d^2y}{dx^2}$ if $y^2 = x^3$

4.
$$5y^2 + \sin y = x^2$$

5.
$$\sin x + 2\cos(2y) = 1$$

6. Find
$$\displaystyle rac{d^2 y}{dx^2}$$
 if $\displaystyle 4x^2 - 2y^2 = 9$

7. Find the slope of the curve $y^4=y^2-x^2$ at (0,1). Check by graphing.

Orthogonal or Normal Lines

Find the tangent and normal to the ellipse $x^2 - xy + y^2 = 7$ at the point (-1, 2). Sketch the graph along with tangent and normal line through the given point. Does the sketch verify your algebraic solution?

General Power Rule - fractional exponents

$$y=x^{p/q} \quad \longrightarrow \quad y^q=x^p$$