## How can we find derivatives of implictly defined functions?

## Quick Check

1. Find the point(s) on the graph of the equation $x^{2}+y^{2}=25$ whose $x$-coordinate is 4 .国
2. How many points have the $x$-coordinate equals zero, $x=0$, on the graph of the equation $y^{4}=y^{2}-x^{2}$.目N
3. Find the slope of the tangent line to the graph of the function $f(x)=\left(2 x^{3}+1\right)^{2}$ at $x=-1$.

## Implicitly vs Explicitly defined functions

| Explicit Form | Implicit Form |
| :--- | :--- |
| $y=1 / x$ | $x y=1$ |
| $y=\sqrt{1-x^{2}}$ and $y=-\sqrt{1-x^{2}}$ | $x^{2}+y^{2}=1$ |

Solve for $y$

$$
x^{3}+y^{3}=6 x y
$$

## Implicitly vs Explicitly defined functions




$$
\begin{gathered}
y^{2}-x+1=0 \text { defines } y=\sqrt{x-1} \text { and } y=-\sqrt{x-1} \text { implicitly. } \\
{[f(x)]^{2}-x+1=0 \text { defines } f(x)=\sqrt{x-1} \text { and } f(x)=-\sqrt{x-1} \text { implicitly. }}
\end{gathered}
$$

## Implicit Differentiation

$$
y=1 / x
$$

$$
x y-1=0
$$

## Implicit Differentiation

$$
f(x)=\sqrt{x-1} \text { and } f(x)=-\sqrt{x-1}
$$

$$
[f(x)]^{2}-x+1=0
$$

## Implicit Differentiation Practice

Find the derivative using implicit differentiation method.

Examples

1. $x^{3}-x y+y^{2}=4$
2. $y^{3}+y^{2}-5 y-x^{2}=-4$
3. Find $\frac{d^{2} y}{d x^{2}}$ if $y^{2}=x^{3}$
4. $5 y^{2}+\sin y=x^{2}$
5. $\sin x+2 \cos (2 y)=1$
6. Find $\frac{d^{2} y}{d x^{2}}$ if $4 x^{2}-2 y^{2}=9$
7. Find the slope of the curve $y^{4}=y^{2}-x^{2}$ at $(0,1)$. Check by graphing.

## Orthogonal or Normal Lines

Find the tangent and normal to the ellipse $x^{2}-x y+y^{2}=7$ at the point $(-1,2)$. Sketch the graph along with tangent and normal line through the given point. Does the sketch verify your algebraic solution?

## General Power Rule - fractional exponents

$$
y=x^{p / q} \quad \longrightarrow \quad y^{q}=x^{p}
$$

