What does f'' say about f ?

Quick Check

Recall the previous lesson. Summarize
what f' says about f .

f'	f
+	
0	

Now think about what f'' would say about f' ...

f''	f'	
+		
0		

Concavity

Draw a tangent segment at each highlighted point. Assign a numerical estimate for the slope to each. What do you notice the shape of the function and change in slopes?

Concave Up / Concave Down / Point of Twist (inflection)

Locate candidates for point of inflection by investigating where second derivative of f is zero or undefined. $\oint f$ must be defined at this point.

Determine the point(s) of inflection and discuss the concavity of the graph of $f(x) = x^3 - 6x^2 + 12x$.

2 Determine the point(s) of inflection and discuss the concavity of the graph of $f(x) = x^4 - 4x^3$.

How could we locate extrema using the concavity of a function?

At the critical number c of f where f'(c)=0

- If $f''(c) > 0 \implies f$ is concave up and there is a rel min at $\left(c, f(c)\right)$
- If $f''(c) < 0 \implies f$ is concave down and there is a rel max at ig(c,f(c)ig)
- If $f''(c) = 0 \implies$ use another method (1st Derivative Test)

Apply the Second Derivative Test

1 Find the relative extrema for $f(x) = -3x^5 + 5x^3$.

2 Find all relative extrema for $f(x) = x^4 - 4x^3 + 2$.

3 Find all relative extrema for $f(x) = x^2(6-x)^3$.

Source Section 2 Sectio