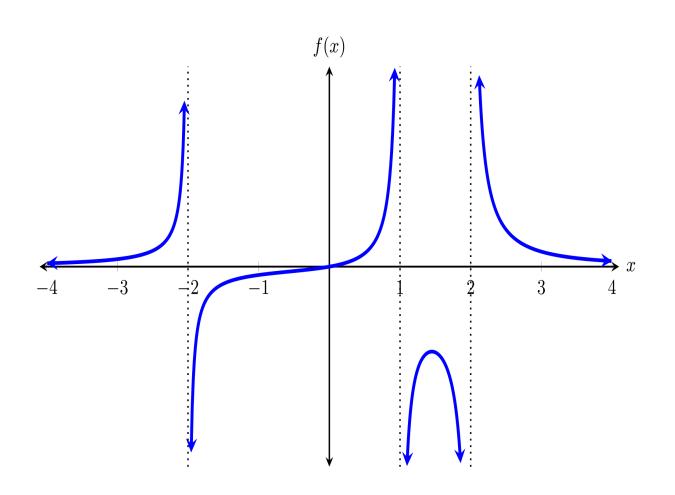
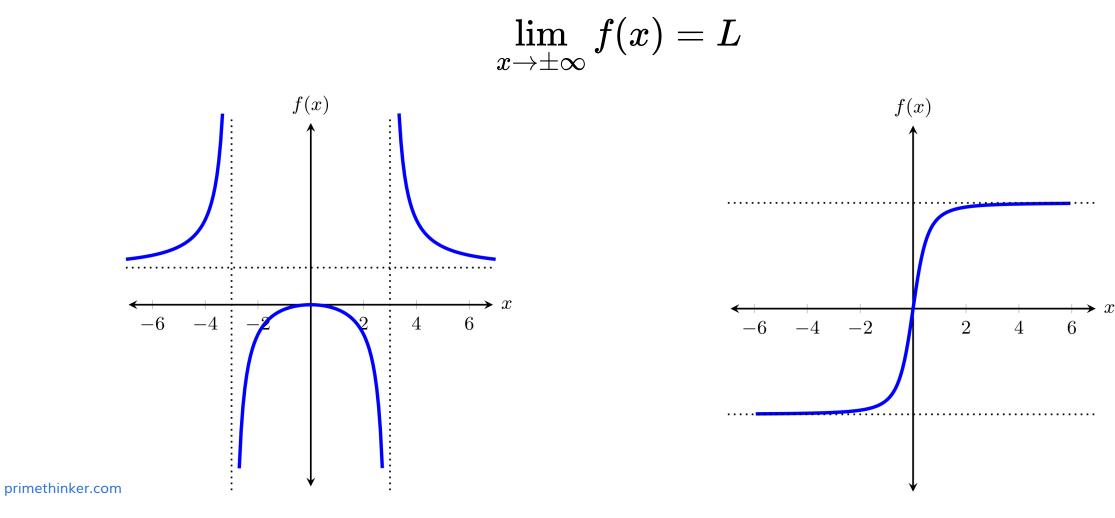
How do we determine the horizontal asymptotes of a function?


Quick Check

1 Find the vertical asymptotes, if any, of the graph of the function.

$$h(x)=rac{4x}{4-x^2}$$

2 What is a vertical asymptote (in your own words)?


- 1. $\lim_{x
 ightarrow -2^{-}}f(x)$
- 2. $\lim_{x
 ightarrow -2^+} f(x)$
- 3. $\lim_{x o 1} f(x)$
- 4. $\lim_{x
 ightarrow 2^{-}}f(x)$
- 5. $\lim_{x
 ightarrow 2^+} f(x)$
- 6. Equations of vertical asymptotes are?

primethinker.com

Horizontal Asymptote

A horizontal line y = L is a horizontal asymptote for a function f if

Guidelines for finding limits of rational functions

1.
$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$$

2. $\lim_{x \to \infty} \frac{2x - 1}{x^5 + 1}$
3. $\lim_{x \to \infty} \frac{2x^3 + 5}{3x^2 + 1}$

? What about
$$\lim_{x o -\infty} f(x)$$
?

- 1. Degree of numerator < degree of denominator \implies limit of rational function = 0.
- Degree of numerator = degree of denominator
 ⇒ limit of rational function = ratio of leading coefficients.
- 3. Degree of numerator > degree of denominator \implies limit of rational function DOES NOT EXIST.

What does the function do at the extreme x values?

$$f(x)=rac{3x-2}{\sqrt{2x^2+1}}$$

Check limits at ∞ and $-\infty$

2.
$$f(x) = rac{3x^2}{x^2 + 2}$$

3. $f(x) = rac{4\sin(x)}{x^2 + 1}$
4. $f(x) = rac{2x}{\sqrt{x^2 + 2}}$
5. $f(x) = rac{2x^2 - 3x + 5}{x^2 + 1}$

Sketch the graph of a function that satisfies all of the given conditions.

Sketch the graph of a function that satisfies all of the given conditions.

3 $\lim_{x o 2} f(x) = -\infty$ $\lim_{x o\infty}f(x)=\infty$ $\lim_{x
ightarrow -\infty}f(x)=0$ $\lim_{x o 0^+} f(x) = \infty$ $\lim_{x
ightarrow 0^{-}}f(x)=-\infty$

$$\begin{array}{l} {\color{black} 4} & f(0) = 4 \\ & \lim_{x \to 0^-} f(x) = 4 \\ & \lim_{x \to 0^+} f(x) = 2 \\ & \lim_{x \to -\infty} f(x) = -\infty \\ & \lim_{x \to 4^-} f(x) = -\infty \\ & \lim_{x \to 4^+} f(x) = \infty \\ & \lim_{x \to \infty} f(x) = 3 \end{array} \end{array}$$