How can we draw a reliable graph of a function without a calculator?

Quick Check

Find the horizontal and vertical asymptotes of the following function, if any.

$$
f(x)=\frac{x}{\sqrt{x^{2}-9}}
$$

Sketching - Visual Practice

1 Handout - Data to Graph

Domain	($-\infty, \infty$)
Intercepts	y-intercept: 1
Symmetry	None
Asymptotes	None
Intervals where f is \nearrow or \backslash	$\begin{aligned} & \text { on }(-\infty, 0) \text { and on }(2, \infty) ; \\ & \text { on }(0,2) \end{aligned}$
Relative extrema	Rel. max. at (0,1); rel. min. at $(2,-3)$
Concavity	Downward on ($-\infty, 1$); upward on $(1, \infty)$
Point of inflection	$(1,-1)$
Domain	$(-\infty, 0) \cup(0, \infty)$
Intercepts	x-intercept: 1
Symmetry	None
Asymptotes	x-axis; y-axis
Intervals where f is $\boldsymbol{\sim}$ or \backslash	$\begin{aligned} & \nearrow \text { on }(0,2) ; \backslash \text { on }(-\infty, 0) \\ & \text { and on }(2, \infty) \end{aligned}$
Relative extrema	Rel. max. at (2,1)
Concavity	Downward on $(-\infty, 0)$ and on $(0,3)$; upward on $(3, \infty)$
Point of inflection	$\left(3, \frac{8}{9}\right)$

2 Handout + Desmos - Graph to Data

Sketching - Algebraic Practice

Sketch the curve $f(x)=\frac{2 x^{2}}{x^{2}-1}$.

1. Find the domain of f.
2. Find the $x-$ and y-intercepts of f.
3. Determine whether the graph of f is symmetric to y-axis or the origin.
4. Find the horizontal and vertical asymptotes of f.
5. Find the intervals on which f is increasing or decresing.
6. Find the relative extrems of f.
7. Determine the concavity and points of inflection of f.
8. Combine the information gathered in steps $1-7$ to sketch the graph of f.

Sketching - Algebraic Practice

1 Analyze and sketch the graph of $y=\frac{2 x^{2}-8}{x^{2}-16}$.

2 Analyze and sketch the graph of $f(x)=2 x^{5 / 3}-5 x^{4 / 3}$

