How do we solve applied maximum and minimum problems?

Quick Check

Find two numbers whose sum is 23 and whose product is a maximum.

1. Use a table of values to estimate the answer to the problem.
$1^{\text {st }}$ Number $2^{\text {nd }}$ Number Product $1 \quad 22 \quad 22$
2. Think through the problem algebraically and using calculus techniques learned regarding extrema.

Optimization - Box with open top - Desmos APP

A box with an open top is made by taking a 8 cm by 10 cm sheet and cutting out square corners whose sides have length x, and then bending up the sides. Which length x gives the maximum volume? What is that volume?

Solving Applied Optimization Problems

1 Read the problem.

2 Draw a picture.

3 Introduce Variables. Think about constraints on lengths, values due to the scenario.

4 Write an equation for the unknown quantity.

5 Test the critical points and endpoints in the domain of the unknown.

Fencing problem

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

> Visualize with Geogebra Applet.

NOT a farmer \Longrightarrow think about building a garden bed, fencing a property, same problem applies in different contexts.

Can of Soda, Soup, Goya Beans, Tomato Paste instead...

A cylindrical can is to be made to hold $1 L$ of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can. $\left(1 L=1000 \mathrm{~cm}^{3}\right)$

Visualize using the Geogebra Applet

Illustration of an endpoint maximum

Four feet of wire is to be used to form a square and a circle. How much of wire should be used for the square and how much should be used for the circle to enclose the maximum total area?

* Draw a diagram...

