When are numerical approximation techniques useful?

Quick Check

AP 1998

Let f be a function with $f(1)=4$ such that for all points on the graph of f, the slope is given by $\frac{3 x^{2}+1}{2 y}$.

1. Find the slope of the graph of f at the point where $x=1$.
2. Write an equation for the line tangent to the graph of f at $x=1$ and use it to approximate $f(1.2)$. Why might this be good approximation?

Newton's Method

- Method for approximating the real zeroes of a function.
- Uses tangent lines to approximate the function near its x-intercepts.

Consider a function that is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If the y values $f(a)$ and $f(b)$ differ in sign, then by the intermediate value theorem, $f(x)$ must pass the intermediate value of zero $(f(x)=0)$ somewhere in (a, b).

Let's visualize with Geogebra Applet then derive the formula $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ ourselves.

Using the Newton's Method

1 Use three iterations to approximate a zero of $f(x)=x^{2}-2$. Use $x_{1}=1$ as the initial guess.

2 Use two iterations of Newton's Methods to approximate the zero of $f(x)=x^{2}-3$. Use $x_{1}=1.7$.

What to do when Newton's Methods Fails?

$!$ Notice the division by $f^{\prime}\left(x_{n}\right)$ in the formula: $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$

OR looping
OR going farther

More problem solving uses of Newton's Method

Approximate the x-value(s) of the indicated point of intersection of the graphs of $f(x)=3-x$ and $g(x)=\frac{1}{x^{2}+1}$.

