What is an antiderivative?

Quick Check

Find the derivative of each of the following functions.

1.
$$f(x) = x^3 - 3x^2 + 5$$

2. $g(x) = x^3 - 3x^2 + \pi$
3. $h(x) = x^3 - 3x^2 - 1$
4. $p(x) = x^3 - 3x^2 - \sqrt{\pi}$

Solution What conjecture can you make about the derivative of $f(x) = x^3 - 3x^2 + C$ where C is a constant?

Integral

Extract from the manuscript of Leibniz dated October 29, 1675 in which the integral sign first appeared.

Definition of the Antiderivative

A funciton F is an antiderivative of f on an interval I if F'(x) = f(x) for all x in I.

Let
$$f(x) = 3x^2$$
 and $F(x) = x^3 + C$
 $F'(x) = f(x)$
 $rac{d}{dx}(x^3 + C) = 3x^2$

The antiderivative of $3x^2$ is $x^3 + C$

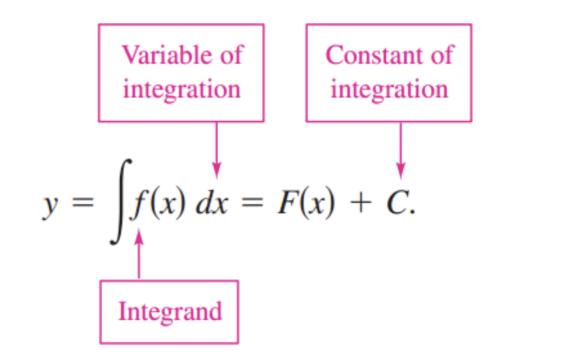
Finding Antiderivatives

For each derivative, describe the original function F.

 F'(x) = 2x F'(x) = x $F'(x) = x^2$ $4 F'(x) = \frac{1}{x^2}$ $F'(x)=rac{1}{x^3}$ $\bullet F'(x) = \cos(x)$

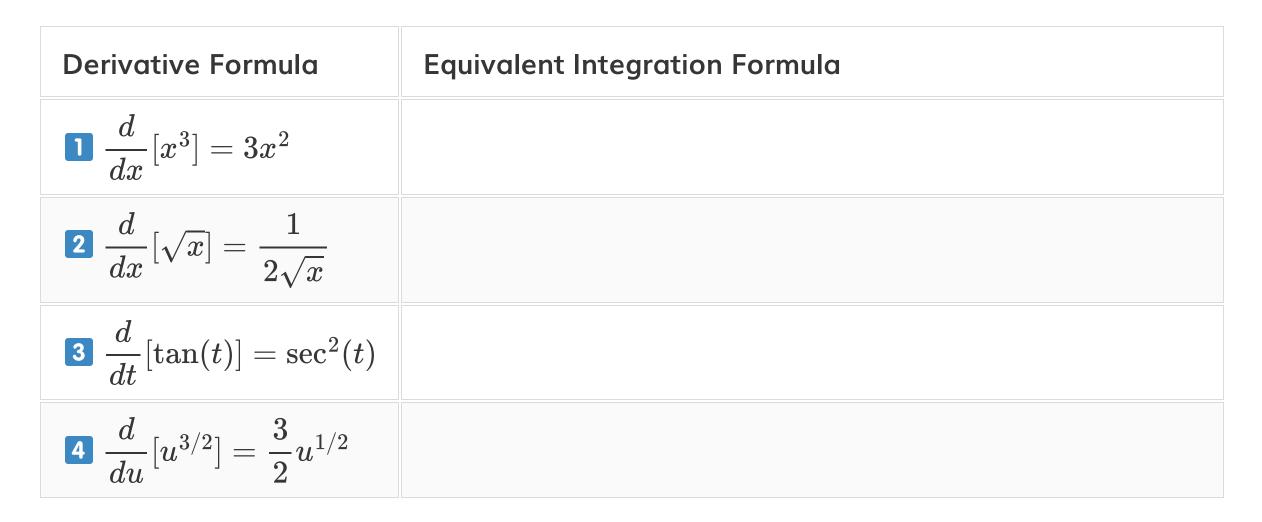
What strategy did you use to find *F*?

The Indefinite Integral



antiderivative of f with respect to x

Using the definition of the antiderivative.



Basic Integration Rules

$$\int F'(x)\,dx = F(x) + C$$

Differentiation is the "inverse" of integration.

if
$$\int f(x)\,dx = F(x) + C$$
, then $rac{d}{dx} \left[\int f(x)
ight] dx = f(x)$

Integration is the "inverse" of differentiation.

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 dx = C$
$\frac{d}{dx}[kx] = k$	$\int k dx = kx + C$
$\frac{d}{dx}[kf(x)] = kf'(x)$	$\int kf(x) dx = k \int f(x) dx$
$\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$	$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$
$\frac{d}{dx}[x^n] = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$ Power Rule
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\tan x] = \sec^2 x$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}[\sec x] = \sec x \tan x$	$\int \sec x \tan x dx = \sec x + C$
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$

Integrating polynomial functions

1 Find the antiderivative of f(x) = 3x.

2
$$\int dx$$

3 $\int (x+2) dx$
4 $\int (3x^4 - 5x^2 + x) dx$

ightarrow Rewrite the integrand in a form that fits basic integration rules ightarrow

Find the indefinite integral and check your result by differentiation

1)
$$\int (x + x^2) dx$$

2) $\int 4 \cos x \, dx$
3) $\int (3x^6 - 2x^2 + 7x + 1) \, dx$
4) $\int (x + 1)(x^2 - 2) \, dx$
5) $\int \frac{t^2 - 2t^4}{t^4} \, dt$

6
$$\int \frac{x+1}{\sqrt{x}} dx$$

7
$$\int \frac{\sin x}{\cos^2 x} dx$$

8
$$\int 2\sin x + 3\cos x dx$$

9
$$\int 1 - \csc t \cot t dt$$

10
$$\int (\tan^2 y + 1) dy$$

Differential Equation

Find the general solution of $F'(x)=rac{1}{x^2}$, $\ x>0.$

then find the particular solution that satisfies the initial condition F(1) = 0.

Visual Understanding

Identify which of the two graphs 1 and 2 is the graph of the funciton f and the graph of its antiderivative. Give a reason for your choice.

