How do we use \sum notation to write and evaluate sums?

Quick Check

1. What is the sum of all integers from 1 to 100 ?
$1+2+3+4+5+6+7+\ldots+98+99+100$
2. Generalize the result to find the sum of all integers from 1 to n ?

 Prince of Maths

Counting the pebbles

Sigma Notation

$$
\begin{aligned}
& \underset{\substack{\text { Ending } \\
\text { value of } k \\
\text { inis to add } \\
\text { Starting } \\
\text { value of } k}}{ } \longrightarrow \sum_{k=m}^{n} f(k) \\
& 1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=\sum_{k=1}^{5} k^{2}
\end{aligned}
$$

The summation of k^{2}, where k runs from 1 to 5 .

Expand each sum (! Don't Simplify)

$1 \sum_{k=4}^{8} k^{3}$
$2 \sum_{k=1}^{5} 2 k$
$3 \sum_{k=0}^{5}(2 k+1)$
$4 \sum_{i=1}^{5} 2$
$5 \sum_{k=0}^{5}(-1)^{k}(2 k+1)$
a

(8) $\sum_{j=0}^{2} x^{3}$

Rules of Summation

1. $\sum_{k=1}^{n} c a_{k}=c \cdot \sum_{k=1}^{n} a_{k} \quad$ where c is a constant.
2. $\sum_{k=1}^{n}\left(a_{k}+b_{k}\right)=\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}$
3. $\sum_{k=1}^{n}\left(a_{k}-b_{k}\right)=\sum_{k=1}^{n} a_{k}-\sum_{k=1}^{n} b_{k}$

Use the rules of summation to expand each sum.
A $\sum_{k=1}^{10} 3 k^{2}$
B $\sum_{k=2}^{8}\left(k+3 k^{3}\right)$

Summation Formulas

$1 \quad \sum_{i=1}^{n} c=c n$
$3 \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
$2 \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
$4 \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Evaluate $\sum_{i=1}^{n} \frac{i+1}{n^{2}}$ for $n=10$ and $n=10,000$.

Evaluate - Use the summation formulas to simplify each sum as a $f(n)$
(1) $\sum_{i=1}^{n} i(i-1)^{2}$
$2 \sum_{i=1}^{n} \frac{1}{n^{3}}(i-1)^{2}$
(3) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{16 i}{n^{2}}$
(4) $\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(i+\frac{i}{n}\right)\left(\frac{2}{n}\right)$

