How do we find the area of a plane region using limits?

Quick Check

What is area?

The Area Problem

$$
A=A_{1}+A_{2}+A_{3}+A_{4}
$$

Finding the area of regions other than polygons is more difficult.

Method of Exhaustion

Archimedes used the method of exhaustion to compute the area inside a circle. (Wikipedia)迅 TED ED - Archimedes' Eureka!

Area under a curve

How can we compute the area of a region S that lies under the curve $y=f(x)$?

Approximating the area of a plane

region

1. How many strips to cut the shape into?
2. What will be the size of each cut?

What decisions would keep the calculations easy?

Practice

Approximate the area of the region lying between the graph of $f(x)=-x^{2}+5$ and the x-axis between $x=0$ and $x=2$. Use 5 rectangles shown compute each approximation.

2

Upper Sum and the Lower Sum

Rectangles formed using mimimum of the f on each subinterval create the lower sum. Rectangles formed using maximum of the f on each subinterval create the upper sum.

Definition of Area using Limits

The area of the region that lies under the graph of a continuous function f is the limit of the sum of the areas of approximating rectangles.

$$
\text { Area }=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]
$$

(a) $n=2$

(b) $n=4$

(c) $n=8$

(d) $n=12$

Finding Area using the Limit Definition

Find the area of the region bounded by the graph of $f(x)=4-x^{2}, x$-axis, and the vertical lines $x=1$ and $x=2$.

