How does the Fundamental Theorem help us explore the definition of the natural logarithm as an integral?

Quick Check

Sketch the region corresponding to each definite integral. **I** DO NOT EVALUATE THE INTEGRAL.

$$1 \int_{0}^{5} (x+1) dx$$
 $2 \int_{1}^{1} \frac{1}{t} dt$ $3 \int_{1}^{4} \frac{1}{t} dt$

Definition & Derivative

The natural logarithmic function is defined by

$$\ln(x)=\int_1^x rac{1}{t}\,dt$$
, $x>0$

The domain of $\ln(x)$ is the set of positive real numbers.

primethinker.com

2

Graph of $\ln(x)$

To sketch the graph of $y = \ln(x)$, you can think of the natural logarithmic function as an antiderivative given by the differential equation

$$rac{dy}{dx} = rac{1}{x}$$

Field of Slopes

X

primethinker.com

Properties of the Natural

Logarithmic Function

1. Domain:

Range:

- 2. The function is continuous, increasing, and one-to-one.
- 3. The graph is concave downward.

Logarithmic Properties

If a and b are positive numbers and n is rational, then the following properties are true.

1.
$$\ln(1) = 0$$

3. $\ln(a^n) = n \ln(a)$
4. $\ln(\frac{a}{b}) = \ln(a) - \ln(b)$

Examples:

a.
$$\ln(\frac{10}{9})$$
 b. $\ln(\sqrt{3x+2})$ c. $\ln(\frac{6x}{5})$ d. $\ln\left(\frac{(x^2+3)^2}{x\sqrt[3]{x^2+1}}\right)$

Practice

A Use the laws of logarithms to expand each expression.

1.
$$\ln \frac{(x^2+5)^4 \sin(x)}{x^3+1}$$

2. $\ln \frac{r^2}{3\sqrt{s}}$
3. $\ln \sqrt{a(b^2+c^2)}$
4. $\ln(uv)^{10}$
5. $\ln \frac{3x^2}{(x+1)^5}$

B Express the expression as a single logarithm.

6.
$$\ln 3 + \frac{1}{3} \ln 8$$

7. $\ln(1+x^2) + \frac{1}{2} \ln(x) - \ln(\sin(x))$
8. $\ln(a+b) + \ln(a-b) - 2\ln c$

7

The number e

The letter *e* denotes the positive real number such that

$$\ln(e) = \int_1^e rac{1}{t} \, dt$$

