Quick Check

Sketch the region corresponding to each definite integral.
! DO NOT EVALUATE THE INTEGRAL.

$$
1 \int_{0}^{5}(x+1) d x
$$

$$
2 \int_{1}^{1} \frac{1}{t} d t
$$

$$
3 \int_{1}^{4} \frac{1}{t} d t
$$

Definition \& Derivative

The natural logarithmic function is defined by
$\ln (x)=\int_{1}^{x} \frac{1}{t} d t, \quad x>0$
The domain of $\ln (x)$ is the set of positive real numbers.

If $x>1$, then $\ln x>0$.

If $0<x<1$, then $\ln x<0$.

Graph of $\ln (x)$

To sketch the graph of $y=\ln (x)$, you can think of the natural logarithmic function as an antiderivative given by the differential equation

$$
\frac{d y}{d x}=\frac{1}{x}
$$

Field of Slopes

Each small line segment has a slope of $\frac{1}{x}$.

Properties of the Natural

Logarithmic Function

1. Domain:

Range:
2. The function is continuous, increasing, and one-to-one.
3. The graph is concave downward.

Logarithmic Properties

If a and b are positive numbers and n is rational, then the following properties are true.

1. $\ln (1)=0$
2. $\quad \ln (a b)=\ln (a)+\ln (b)$
3. $\quad \ln \left(a^{n}\right)=n \ln (a)$
4. $\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)$

Examples:

a. $\quad \ln \left(\frac{10}{9}\right)$
b. $\quad \ln (\sqrt{3 x+2})$
c. $\quad \ln \left(\frac{6 x}{5}\right)$
d. $\quad \ln \left(\frac{\left(x^{2}+3\right)^{2}}{x \sqrt[3]{x^{2}+1}}\right)$

Practice

A Use the laws of logarithms to expand each expression.

1. $\ln \frac{\left(x^{2}+5\right)^{4} \sin (x)}{x^{3}+1}$
2. $\ln \frac{r^{2}}{3 \sqrt{s}}$
3. $\ln \sqrt{a\left(b^{2}+c^{2}\right)}$
4. $\ln (u v)^{10}$
5. $\ln \frac{3 x^{2}}{(x+1)^{5}}$

B Express the expression as a single logarithm.
6. $\ln 3+\frac{1}{3} \ln 8$
7. $\ln \left(1+x^{2}\right)+\frac{1}{2} \ln (x)-\ln (\sin (x))$
8. $\ln (a+b)+\ln (a-b)-2 \ln c$

The number e

The letter e denotes the positive real number such that

$$
\ln (e)=\int_{1}^{e} \frac{1}{t} d t
$$

