How do we find the derivatives of functions involving the natural logarithmic function?

Quick Check

Match the function with its graph.
(a)

(b)

(c)

(d)

$$
f(x)=\ln x+1
$$

$f(x)=-\ln x$

$$
f(x)=-\ln (-x) \quad f(x)=\ln (x-1)
$$

Recall the 2nd Fundamental Theorem of Calculus

$$
\frac{d}{d x}\left(\int_{a}^{p(x)} f(t) d t\right)=f(p(x)) \cdot p^{\prime}(x)
$$

Practice
1 Find the derivative of $\int_{\pi / 2}^{x^{3}} \cos (t) d t$
$2 \frac{d}{d x}\left(\int_{1}^{x} t^{3} d t\right)$

Derivative of the Natural Logarithm Function

Let u be a differentiable function of x.

$$
\frac{d}{d x}[\ln (u)]=\frac{1}{u} \cdot \frac{d u}{d x} \quad u>0
$$

$1 \frac{d}{d x}[\ln (2 x)]$
$3 \frac{d}{d x}[x \ln (x)]$
$2 \frac{d}{d x}\left[\ln \left(x^{2}+1\right)\right]$
$4 \frac{d}{d x}\left[(\ln x)^{3}\right]$

Use Log Properties to help with differentiation

Differentiate each function

1. $f(x)=\ln \left(\frac{x\left(x^{2}+1\right)^{2}}{\sqrt{2 x^{3}-1}}\right)$
2. $f(x)=\ln \sqrt{x+1}$

Logarithmic Differentiation

Find the Derivative of each function

1. $y=\frac{(x-2)^{2}}{\sqrt{x^{2}+1}}$
2. $y=x \sqrt{x^{2}-1}$

Derivative involving Absolute Value

Let u be a differentiable function of x such that $u \neq 0$

$$
\frac{d}{d x}[\ln |u|]=\frac{1}{u} \cdot \frac{d u}{d x}
$$

Proof in two cases
$1 \quad u>0$

$$
2 \quad u<0
$$

Practice

Find the derivative of each function.

1. $f(x)=\ln |\cos x|$
2. $y=\ln |\sin x|$

Find the equation of the tangent line to the graph of f at the given point.
3. $f(x)=3 x^{2}-\ln x$ $(1,3)$

