How do we find the derivatives of functions involving the natural logarithmic function?

Quick Check

Match the function with its graph.

$$f(x) = \ln x + 1$$

$$f(x) = -\ln x$$

$$f(x) = -\ln(-x)$$

$$f(x) = -\ln(-x)$$
 $f(x) = \ln(x-1)$

Recall the 2nd Fundamental Theorem of Calculus

$$rac{d}{dx} \Bigg(\int_a^{p(x)} f(t) \, dt \Bigg) = f\Big(p(x)\Big) \cdot p'(x)$$

Practice

 $lacksquare{1}{1}$ Find the derivative of $\int_{\pi/2}^{x^3} \cos(t) \, dt$

 $\frac{d}{dx} \left(\int_1^x t^3 dt \right)$

Derivative of the Natural Logarithm Function

Let u be a differentiable function of x.

$$rac{d}{dx} \Big[ln(u) \Big] = rac{1}{u} \cdot rac{du}{dx} \qquad u > 0$$

$$\frac{d}{dx} \left[\ln(x^2 + 1) \right]$$

$$\frac{d}{dx} \left[x \ln(x) \right]$$

$$\frac{d}{dx} \left[(\ln x)^3 \right]$$

Use Log Properties to help with differentiation

Differentiate each function

1.
$$f(x)=\ln\left(rac{x(x^2+1)^2}{\sqrt{2x^3-1}}
ight)$$

$$2. f(x) = \ln \sqrt{x+1}$$

Logarithmic Differentiation

Find the Derivative of each function

1.
$$y = \frac{(x-2)^2}{\sqrt{x^2+1}}$$
2. $y = x\sqrt{x^2-1}$

2.
$$y = x\sqrt{x^2 - 1}$$

Derivative involving Absolute Value

Let u be a differentiable function of x such that $u \neq 0$

$$rac{d}{dx} \Big[ln |u| \Big] = rac{1}{u} \cdot rac{du}{dx}$$

Proof in two cases

2

Practice

Find the derivative of each function.

1.
$$f(x) = \ln|\cos x|$$

2.
$$y = \ln |\sin x|$$

Find the equation of the tangent line to the graph of f at the given point.

3.
$$f(x) = 3x^2 - \ln x$$
 (1,3)

primethinker.com