How do we use the log rule of integration to integrate rational functions?

Quick Check

1 Find the equation of the tangent line to the graph of $y=\sin (2 \ln x)$ at $(1,0)$.

2 Find $f^{\prime}(x)$. View the graphs of f and f^{\prime} on your calculator. $f(x)=\sin x+\ln x$

Recall the definition of the anti-derivative.

$$
\int x^{2} d x=\frac{x^{3}}{3}+C
$$

because

$$
\frac{d}{d x}\left(\frac{x^{3}}{3}+c\right)=x^{2}
$$

Log Rule for Integration

The differentiation rule for natural logarithm is

$$
\frac{d}{d x}[\ln (u)]=\frac{1}{u} \cdot \frac{d u}{d x}
$$

Using the definition of the antiderivative
Log Rule for Integration is...

Using the Log Rule for Integration

Examples
$1 \int \frac{10}{x} d x$
$2 \int \frac{1}{3 x+2} d x$
$3 \int \frac{x^{2}}{3-x^{3}} d x$
$4 \int \frac{x}{\sqrt{9-x^{2}}} d x$

Practice
$5 \int \frac{1}{x-5} d x$
$6 \int \frac{3 x^{2}+1}{x^{3}+x} d x$
$7 \int \frac{\sec ^{2} x}{\tan x} d x$
$8 \int \frac{1}{x \ln x} d x$

More Practice

2 Find the area of the region bounded by the graph of $y=\frac{x}{x^{2}+1}$, the x-axis, and the line $x=3$. Start by using your calculator to sketch the region.
$10 \int \frac{(\ln x)^{2}}{x} d x$

Use Long Division before Integrating

Example
$1 \int \frac{x^{2}+x+1}{x^{2}+1} d x$
$2 \int \frac{x^{3}-6 x-20}{x+5} d x$

Practice

$$
\begin{aligned}
& 3 \int \frac{x^{4}+x-4}{x^{2}+2} d x \\
& 4 \int \frac{x^{3}-3 x^{2}+4 x-9}{x^{2}+3} d x
\end{aligned}
$$

Practice

Find the area of the given region.

$$
y=\frac{4}{x}
$$

$$
y=\frac{2}{x \ln x}
$$

