How do we use the log rule of integration to integrate rational functions?

Quick Check

1 Find the equation of the tangent line to the graph of $y = \sin(2 \ln x)$ at (1, 0).

2 Find f'(x). View the graphs of f and f' on your calculator. $f(x) = \sin x + \ln x$

Recall the definition of the anti-derivative.

$$\int x^2 \, dx = \frac{x^3}{3} + C$$

because

$$rac{d}{dx}igg(rac{x^3}{3}+cigg)=x^2$$

primethinker.com

Log Rule for Integration

The differentiation rule for natural logarithm is

$$rac{d}{dx} \Big[ln(u) \Big] = rac{1}{u} \cdot rac{du}{dx}$$
 \downarrow

Using the definition of the antiderivative

Log Rule for Integration is...

Using the Log Rule for Integration

Examples

Practice

More Practice

9 Find the area of the region bounded by the graph of $y=rac{x}{x^2+1}$, the x-axis, and the

line x = 3. Start by using your calculator to sketch the region.

Use Long Division before Integrating

Example

1)
$$\int \frac{x^2 + x + 1}{x^2 + 1} dx$$

2) $\int \frac{x^3 - 6x - 20}{x + 5} dx$

Practice

3
$$\int \frac{x^4 + x - 4}{x^2 + 2} dx$$

4 $\int \frac{x^3 - 3x^2 + 4x - 9}{x^2 + 3} dx$

Practice

Find the area of the given region.

