How do we find the derivative of an inverse function?

Quick Check

Determine whether each of the following functions have inverses. Explain.

Horizontal Line Test

Inverse Function

The inverse of a function is a rule that acts on the output of the function an produces the corresponding input. So, the inverse "undoes" or reverses what the function has done. Not all functions have inverses; those that do are alled one-to-one.

Notation for inverse functions

lacksquare Find f^{-1} for specified values.

If
$$f(1)=5$$
, $f(3)=7$, and $f(8)=-10$, find

1.
$$f^{-1}(5)$$

2.
$$f^{-1}(7)$$

3.
$$f^{-1}(-10)$$

lacksquare Label the graph of f and its inverse.

 $\red{\mathfrak{S}}$ Domain and range of f and f^{-1} ?

Verifying Inverse Functions

Two functions f and g are inverses of each other if

$$f\Big(g(x)\Big) = x \quad ext{and} \quad g\Big(f(x)\Big) = x$$

Show that $f(x)=2x^3-1$ and $g(x)=\sqrt[3]{rac{x+1}{2}}$ are inverses of each other.

Find the inverse function algebraically.

Example

lacksquare Find the inverse function of $f(x)=\sqrt{2x-3}$.

Practice

 $oxed{2}$ If $f(x)=rac{x}{x+1}$, find $f^{-1}(x)$.

lacksquare 3 If $f(x)=x^5-1$, find $f^{-1}(x)$.

Continuity and Differentiability of Inverse Functions

Let f be a function whose domain is an interval I. If f has an inverse function, then the following statements are true.

- 1. If f is continuous on its domain, then f^{-1} is continuous on its domain.
- 2. If f is increasing on its domain, then f^{-1} is increasing on its domain.
- 3. If f is decreasing on its domain, then f^{-1} is decreasing on its domain.
- 4. If f is differentiable at c and $f'(c) \neq 0$, then f^{-1} is differentiable at f(c).

Derivative of the Inverse Function

$$g'(x) = rac{1}{f'\Bigl(g(x)\Bigr)}\,,\quad f'(g(x)
eq 0$$

Let
$$f(x)=rac{1}{4}x^3+x-1$$
 .

Find
$$(f^{-1})'(3)$$
.

Practice

$$lacksquare 1$$
 $f(x) = 2x^3 + 3x^2 + 7x + 4$. Find $(f^{-1})'(4)$.

$$f(x) = \sqrt{x^3 + x^2 + x + 1}$$
. Find $(f^{-1})'(2)$.

Multiple Choice

Let f and g be functions that are differentiable everywhere. If g is the inverse of f and

$$g(-2)=5$$
 and $f'(5)=-rac{1}{2}$, then $g'(-2)=$

A. 2

B. $\frac{1}{2}$ C. $\frac{1}{5}$

D. $-\frac{1}{2}$

 $\mathsf{E.}-2$