What are the properties of the natural exponential function?

Quick Check

Observe the sketch of $y=\ln (x)$.
1 What are the domain and the range of $y=\ln (x)$?
2 Does $\ln (x)$ have an inverse? If yes, provide a reason and sketch the graph of the inverse function.

3 Evaluate the following limits.
a. $\lim _{x \rightarrow 0^{+}} \ln (x)$
b. $\lim _{x \rightarrow \infty} \ln (x)$

Inverse of $\ln (x)$

The inverse function of the natural logarithmic function $f(x)=\ln (x)$ is called the natural exponential function and is denoted by
$f^{-1}(x)=e^{x}$
That is, $y=e^{x}$ if and only if $x=\ln (y)$

Properties of the Natural Exponential Function

1. The domain of $f(x)=e^{x}$ is $(-\infty, \infty)$ and the range is $(0, \infty)$.
2. The function $f(x)=e^{x}$ is continuous, increasing, and one-to-one on its entire domain.
3. The graph of $f(x)=e^{x}$ is convace upward on its entire domain.
4. $\lim _{x \rightarrow-\infty} e^{x}=0$ and $\lim _{x \rightarrow \infty} e^{x}=\infty$

Review and Practice

Solve the following exponential equations.

1. $9-2 e^{x}=7$
2. $\ln (x-2)^{2}=12$
3. $-6+3 e^{x}=8$

Derivatice of the natural exponential function

Consider $y=e^{x}$ if and only if $x=\ln (y)$. Then,

Let u be a differentiable function of x.

$$
\frac{d}{d x}\left[e^{u}\right]=e^{u} \cdot \frac{d u}{d x}
$$

Practice

$1 \frac{d}{d x}\left[e^{2 x-1}\right]$
$2 \frac{d}{d x}\left[e^{-3 / x}\right]$
$3 \frac{d}{d x}\left[e^{x} \ln x\right]$

Find the derivative.
4. $y=x^{3} e^{x}$
$5 y=\ln \left(1+e^{2 x}\right)$
${ }_{6} y=e^{x}(\sin (x)+\cos (x)$
7 Find the equation of the tangent line to the graph of $f(x)=x e^{x}-e^{x}$ at the point $(1,0)$.

Integral of e^{x}

Because the exponential function $y=e^{x}$ has a simple derivative, its integral is also simple.

Example

1. $\int x^{2} e^{x^{3}} d x$
2. Find the area under the curve $y=e^{-3 x}$ from 0 to 1 .

Practice

$1 \int e^{2 x-1} d x$
4. $\int 5 x e^{-x^{2}} d x$
$2 \int \frac{e^{1 / x}}{x^{2}} d x$
${ }^{3} \int e^{x} \sqrt{1-e^{x}} d x$
$5 \int \sin x \cdot e^{\cos x} d x$
$6 \int \frac{5-e^{x}}{e^{2 x}} d x$
$7 \int_{0}^{1} \frac{e^{x}}{1+e^{x}} d x$

