What are the properties of the natural exponential function?

Quick Check

Observe the sketch of $y = \ln(x)$.

- 1 What are the domain and the range of $y = \ln(x)$?
- 2 Does $\ln(x)$ have an inverse? If yes, provide a reason and sketch the graph of the inverse function.
- **3** Evaluate the following limits.

a. $\lim_{x o 0^+} \ln(x)$ b. $\lim_{x o \infty} \ln(x)$

Inverse of $\ln(x)$

The inverse function of the natural logarithmic function $f(x) = \ln(x)$ is called the natural exponential function and is denoted by

 $f^{-1}(x) = e^x$

That is, $y=e^x$ if and only if $x=\ln(y)$

Properties of the Natural Exponential Function

- 1. The domain of $f(x)=e^x$ is $(-\infty,\infty)$ and the range is $(0,\infty).$
- 2. The function $f(x) = e^x$ is continuous, increasing, and one-to-one on its entire domain.
- 3. The graph of $f(x) = e^x$ is convace upward on its entire domain.

4.
$$\lim_{x
ightarrow -\infty}e^x=0$$
 and $\lim_{x
ightarrow \infty}e^x=\infty$

Review and Practice

Solve the following exponential equations.

1. $9 - 2e^x = 7$ 2. $\ln(x - 2)^2 = 12$

3. $-6 + 3e^x = 8$

Derivatice of the natural exponential function

Consider $y = e^x$ if and only if $x = \ln(y)$. Then,

Let u be a differentiable function of x.

$$rac{d}{dx}[e^u]=e^u\,\cdot\,rac{du}{dx}$$

Practice

Find the derivative.

4
$$y = x^3 e^x$$

5
$$y = \ln(1 + e^{2x})$$

6
$$y = e^x(\sin(x) + \cos(x))$$

7 Find the equation of the tangent line to the graph of $f(x) = xe^x - e^x$ at the point (1, 0).

Integral of e^x

Because the exponential function $y = e^x$ has a simple derivative, its integral is also simple.

Example

1.
$$\int x^2 e^{x^3} dx$$

2. Find the area under the curve $y = e^{-3x}$ from 0 to 1.

Practice

