What methods can be used to differentiate and integrate exponential functions with bases other than e ?

Quick Check

Without integrating, state the integration formula/ steps that you would take to integrate each of the following.
$1 \int \frac{e^{x}}{e^{x}+1} d x$

$$
2 \int x e^{x^{2}} d x
$$

Exponential functions to Base a

If a is a positive real number ($a \neq 1$) and x is any real number, then the exponential function to the base a is denoted a^{x} and is defined by

$$
a^{x}=e^{(\ln a) \cdot x}
$$

If $a=1$, then $=1^{x}$ is a constant function.

Some familiar properties:

$$
\begin{array}{ll}
\text { 1. } a^{0}=1 & \text { 3. } \frac{a^{x}}{a^{y}}=a^{x-y} \\
\text { 2. } a^{x} a^{y}=a^{x+y} & \text { 4. }\left(a^{x}\right)^{y}=a^{x y}
\end{array}
$$

Evaluating Logarithms

$$
a^{x}=y \Longleftrightarrow \log _{a} y=x
$$

$1 \log _{10} 1000$
$2 \log _{2} 32$
${ }^{3} \log _{10} .1$
$1 \log _{16} 4$

Logarithm function to Base a

If a is a positive real number ($a \neq 1$) and x is any real number, then the logarithmic function to the base a is denoted $\log _{a} x$ and is defined by

$$
\log _{a} x=\frac{1}{\ln a} \ln x
$$

Some familiar properties:

1. $\log _{a} 1=0$
2. $\log _{a} x y=\log _{a} x+\log _{a} y$
3. $\log _{a} x^{n}=n \log _{a} x$
4. $\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$

Quick Review

$13^{x}=\frac{1}{81}$
$2 \log _{2} x=-4$
$3 \log _{2}(x-1)=5$

Derivatives of Exponential and Logarithmic Fuctions

Let a be a real number ($a \neq 1$) and u be a differentiable function of x.

$$
a^{x}=e^{(\ln a) x}
$$

1. $\frac{d}{d x} a^{x}=$
2. $\frac{d}{d x} a^{u}=$

$$
\log _{a} x=\frac{1}{\ln a} \ln x
$$

3. $\frac{d}{d x} \log _{a} x=$
4. $\frac{d}{d x} \log _{a} u=$

Practice

Differentiate each function.

Example

1. $y=2^{x}$
2. $y=2^{x^{2}+3 x}$
3. $y=\log _{10} \cos x$
4. $y=x^{2 / x}$

Practice

$1 f(x)=4^{x}$
2 $g(t)=t^{2} 2^{t}$
3 $f(x)=\log _{2} \frac{x^{2}}{x-1}$
$4 f(x)=(\ln x)^{\cos x}$
! careful!
$5 y=e^{e}$
6 $y=e^{x}$
$7 y=x^{e}$
$8 y=x^{x}$

Integrating Exponential Functions to another base

$$
\begin{aligned}
& a^{x}=e^{(\ln a) x} \\
& \downarrow \\
& \int a^{x} d x=
\end{aligned}
$$

Example:
$\int 2^{x} d x=$

Practice

$$
\begin{aligned}
& 1 \int 5^{-x} d x \\
& 2 \int(3-x) 7^{(3-x)^{2}} d x \\
& 3 \int 2^{\sin x} \cdot \cos x d x \\
& 4 \int_{1}^{e} 6^{x}-2^{x} d x
\end{aligned}
$$

