What is Euler's Method?

Quick Check - Match the slope field with the differential equation.

$1 y^{\prime}=2-y$

$2 y^{\prime}=x(2-y)$

$3 y^{\prime}=x+y-1$

$4 y^{\prime}=\sin x \sin y$

Slope Field

Direction field for $\frac{d y}{d x}=\frac{x}{y}$

Let's look at the general solution algebraically!

Euler's Method

Euler's Method is a numerical approach to approximating the particular solution of the differential equation $y^{\prime}=F(x, y)$ that passes through the point $\left(x_{0}, y_{0}\right)$.

Approximating a solution using the

 Euler's MethodUse Euler's Method to approximate the particular solution of the differential equation $y^{\prime}=x-y$ passing through the point $(0,1)$. Use a step of $h=0.1$.

2009 Free Response (AP)

Consider the differential equation $\frac{d}{d x}=6 x^{2}-x^{2} y$. Let $y=f(x)$ be a particular solution to this differential equation with the initial condition $f(-1)=2$.
a. Use Euler's Method with two steps of equal size, starting at $x=-1$, to approximate $f(0)$. Show the work that leads to your answer.

2005 Free Response (AP)

Consider the differential equation $\frac{d y}{d x}=2 x-y$.

1. Sketch a slope field for the given differential equation at the twelve points indicated and sketch the solution curve that passes through the point $(0,1)$.

2. The solution curve that passes throught the point $(0,1)$ has a local minimum $x=\ln \frac{3}{2}$. What is the y-coordinate of this local minimum?

2005 Free Response (AP) - Continued

Consider the differential equation $\frac{d y}{d x}=2 x-y$.
3. Let $y=f(x)$ be the particular solution to the given differential equation with the initial condition $f(0)=1$. Use Euler's Method, starting at $x=0$ with two steps of equal size, to approximate $f(-0.4)$. Show the work that leads to your answer.
4. Find $\frac{d^{2} y}{d x^{2}}$ in terms of x and y. Determine whether the approximation found in part (3) is less than or greater than $f(-0.4)$. Explain your reasoning.

