How is the disk method used to find the volume of a solid of revolution?

Quick Check

Why do we care about knowing the volume of solids?

Watch video on woodturning and pottery wheel

Solids created via revolution

The Disk Method

Find the volume of the solid obtained by revolving the region under the graph of $y=\sqrt{x}$ on [0,2] about the x-axis.

f w Moving around the y-axis

Find the volume of the solid obtained by revolving the region bounded by the graphs of $y=x^3$, y=8, and x=0 about the y-axis.

Revolving About a Line That Is Not a Coordinate Axis

Find the volume of the solid formed by revolving the region bounded by $f(x)=2-x^2$, g(x)=1, and the line y=1.

Practice

Find the volume of the solid that is obtained by revolving the region about the indicated axis or line.

