How is the shell method used to find the volume of a solid of revolution?

Quick Check

Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}$, y=2, and x=0 is revolved about the y-axis.

Idea

Cylindrical Shell

 $V = 2\pi \cdot [ext{average radius}] \cdot [ext{height}] \cdot [ext{thickness}]$

Volume by Cylindricals Shells

Find the volume of the solid obtained by rotating about the y- axis the region bounded by $y=2x^2-x^3$ and y=0.

4

Volume by Cylindricals Shells

Use cylindrical shells to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y=\sqrt{x}$ from 0 to 1.

Volume by Cylindrical Shells

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^2$ and y=0 about the line x=2.

Washer vs. Shell

Find the volume of the solid obtained by rotating about the y-axis the region between y=x and $y=x^2$.

Washer vs. Shell

Let R be the region bounded by the graphs of $y = x^2 + 1$, y = -x + 1, and x = 1. Find the volume of the solid that is obtained by revolving R about the y-axis using the method of washers and the method of cylindrical shells.

(a) The region R

(b) The method of washers

(c) The method of shells

8