How is the shell method used to find the volume of a solid of revolution?

Quick Check

Find the volume of the solid generated when the region enclosed by $y=\sqrt{x}, y=2$, and $x=0$ is revolved about the y-axis.

Idea

Cylindrical Shell

$$
V=2 \pi \cdot[\text { average radius }] \cdot[\text { height }] \cdot[\text { thickness }]
$$

Volume by Cylindricals Shells

Find the volume of the solid obtained by rotating about the y - axis the region bounded by $y=2 x^{2}-x^{3}$ and $y=0$.

Volume by Cylindricals Shells

Use cylindrical shells to find the volume of the solid obtained by rotating about the $x-$ axis the region under the curve $y=\sqrt{x}$ from 0 to 1 .

Volume by Cylindrical Shells

Find the volume of the solid obtained by rotating the region bounded by $y=x-x^{2}$ and $y=0$ about the line $x=2$.

Washer vs. Shell

Find the volume of the solid obtained by rotating about the y-axis the region between $y=x$ and $y=x^{2}$.

Washer vs. Shell

Let R be the region bounded by the graphs of $y=x^{2}+1, y=-x+1$, and $x=1$. Find the volume of the solid that is obtained by revolving R about the y-axis using the method of washers and the method of cylindrical shells.

(a) The region R

(b) The method of washers

(c) The method of shells

