How do you determine which integration rule to use in a given situation?

Quick Check

Find each antiderivative.

1
$$\int \frac{4}{x^2+9} dx$$
 2 $\int \frac{4x}{x^2+9} dx$ 3 $\int \frac{4x^2}{x^2+9} dx$

Integration Strategies

Breakup

$$\int \frac{x+3}{\sqrt{4-x^2}}\,dx$$

2 Re-write as squares

$$\int \frac{x^2}{\sqrt{16-x^6}}\,dx$$

$$\int \frac{1}{1+e^x} \, dx$$

4 Disguised POWER Rule

$$\int (\cot x) [\ln(\sin x)] \, dx$$

5 TRIG Identities

 $\int \tan^2(2x)\,dx$

Simplification Strategies for Integrals

Technique

Expand (numerator).

Separate numerator.

Complete the square.

Divide improper rational function.

Add and subtract terms in numerator.

Use trigonometric identities.

Multiply and divide by Pythagorean conjugate.

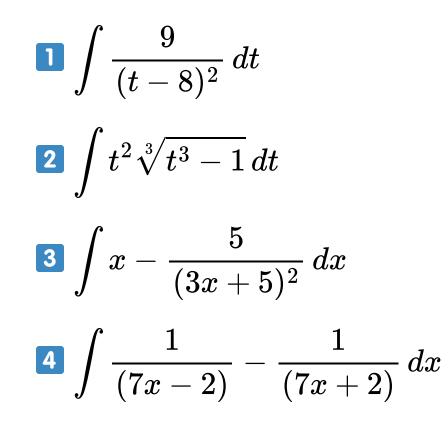
Example

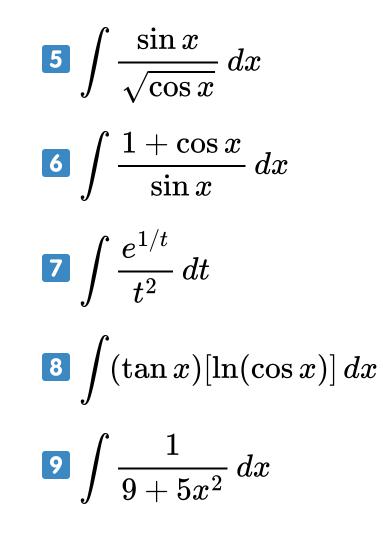
$$(1 + e^{x})^{2} = 1 + 2e^{x} + e^{2x}$$

$$\frac{1 + x}{x^{2} + 1} = \frac{1}{x^{2} + 1} + \frac{x}{x^{2} + 1}$$

$$\frac{1}{\sqrt{2x - x^{2}}} = \frac{1}{\sqrt{1 - (x - 1)^{2}}}$$

$$\frac{x^{2}}{x^{2} + 1} = 1 - \frac{1}{x^{2} + 1}$$


$$\frac{2x}{x^{2} + 2x + 1} = \frac{2x + 2 - 2}{x^{2} + 2x + 1}$$


$$= \frac{2x + 2}{x^{2} + 2x + 1} - \frac{2}{(x + 1)^{2}}$$

$$\cot^{2} x = \csc^{2} x - 1$$

$$\frac{1}{1 + \sin x} = \left(\frac{1}{1 + \sin x}\right) \left(\frac{1 - \sin x}{1 - \sin x}\right)$$

Practice

