Quick Check

Combine the following functions

$$
\frac{1}{x-2}+\frac{-1}{x+3}
$$

JOHN BERNOULLI (1667-I748)

The method of partial fractions was introduced by John Bernoulli, a Swiss mathematician who was instrumental in the early development of calculus. John Bernoulli was a professor at the University of Basel and taught many outstanding students, the most famous of whom was Leonhard Euler.

How to reverse the process?

$\frac{5}{x^{2}+x-6}=\frac{?}{(x-2)}+\frac{?}{x+3}$

Notice, integrating $\frac{5}{x^{2}+x-6}$ is hard. However, integrating $\frac{1}{x-2}+\frac{-1}{x+3}$ is easy.

The method of partial fractions shows how to reverse the process. ! Although, this method is just good for rational functions whose denominators factor nicely.

暑 Keep your Integration Toolbox handy

Just because it's an integral of a rational function, don't start thinking partial fractions.
Think about how you would tackle the following integral.
$\int \frac{x^{2}+x+2}{x^{2}+1} d x$

Method of Partial Fractions

$\int \frac{1}{x^{2}-5 x+6} d x$
Start by factoring the denominator.
$\frac{1}{x^{2}-5 x+6}=\frac{1}{(x-3)(x-2)}=\frac{A}{x-3}+\frac{B}{x-2}$
Now solve for A and B. Then, ofcourse return to integrating.

Decomposition

Helper Rules for decomposing $N(x) / D(x)$ into partial fractions
1 Divide when improper: $\frac{N(x)}{D(x)}=$ a polynomial $+\frac{N_{1}(x)}{D x}$
2 Factor Denominator completely
3 Linear Factors: $\frac{A}{(p x+q)}+\frac{B}{(p x+q)^{2}}+\cdots+\frac{A}{(p x+q)^{n}}$
4 Quadratic Factors: $\frac{A x+B}{a x^{2}+b x+c}+\frac{A x+B}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A x+B}{\left(a x^{2}+b x+c\right)^{n}}$

Examples

Distinct Linear Factors
$1 \int \frac{x^{2}+2 x-1}{2 x^{3}+3 x^{2}-2 x} d x$
Distinct Linear and Quadratic Factors
$3 \int \frac{2 x^{3}-4 x-8}{\left(x^{2}-x\right)\left(x^{2}+4\right)} d x$
Repeated Quadratic Factors
$4 \int \frac{8 x^{3}+13 x}{\left(x^{2}+2\right)^{2}} d x$

You Try

$$
2 \int \frac{5 x^{2}+20 x+6}{x^{3}+2 x^{2}+x} d x
$$

Practice

$1 \int \frac{5 x^{2}-12 x-12}{x^{3}-4 x} d x$
${ }^{3} \int \frac{6 x}{(x-2)\left(x^{2}+2 x+4\right)} d x$
$2 \int \frac{x^{2}+3 x-4}{x^{3}-4 x^{2}+4 x} d x$
$4 \int \frac{x^{2}-x+9}{\left(x^{2}+9\right)^{2}} d x$

Logic for repeating factors.

Authored as a response on StackExchange.

Consider the simplest of cases.

Assuming ξ is some polynomial, one could carry on long division to determine the quotient and the remainder. Thus one could get

$$
\frac{\xi}{x^{3}}=q(x)+\frac{r(x)}{x^{3}}
$$

Now what can we say for certain about $r(x)$? We can say that it is the remainder thus of smaller degree than x^{3}. The most general possible polynomial of degree 2 or smaller is $A+B x+C x^{2}$. Then

$$
\frac{r(x)}{x^{3}}=\frac{A+B x+C x^{2}}{x^{3}}
$$

Further more, we can split the right side

$$
\frac{r(x)}{x^{3}}=\frac{A}{x^{3}}+\frac{B x}{x^{3}}+\frac{C x^{2}}{x^{3}}
$$

which becomes

$$
\frac{r(x)}{x^{3}}=\frac{A}{x^{3}}+\frac{B}{x^{2}}+\frac{C}{x}
$$

Thus the above would be a sensible what to try to split any proper fraction $\frac{r(x)}{x^{3}}$ Moreover, the similar idea would hold for $\frac{r(x)}{(x+a)^{2}}$, meaning a sensible way to split it would be

$$
\frac{r(x)}{(x+a)^{3}}=\frac{A}{(x+a)^{3}}+\frac{B}{(x+a)^{2}}+\frac{C}{(x+a)}
$$

> Imagine you tried to do partial fractions on $\frac{1+x}{x^{2}}$. You could try $\frac{1+x}{x^{2}}=\frac{A}{x}+\frac{B}{x}$, but that's just $\frac{A+B}{x}$ on the right so it won't work. However, $\frac{1+x}{x^{2}}=\frac{1}{x^{2}}+\frac{x}{x^{2}}$, which simplifies into $\frac{1}{x^{2}}+\frac{1}{x}$, which is the best we can do. - Akiva Weinberger Jan 7 ' 16 at 17:44

