How do we deal with limits that produce indeterminate forms?

Quick Check

Evaluate each limit.

Indeterminate Forms

Not all limits involving indeterminate forms can be evaluated using algebraic manipulation. Consider the following example.

Maybe use a graph or a table to find the limit??

Let f and g be differentiable functions on (a, b) containing c, except possibly at c itself. Assume that $g'(x) \neq 0$ for all x in (a, b), except possibly at c itself. If the limit of $\frac{f(x)}{g(x)}$ as $x \to a$ produces an indeterminate form of type $\frac{0}{0}$ or $\pm \frac{\infty}{\infty}$,

$$\lim_{x o c} rac{f(x)}{g(x)} = \lim_{x o c} rac{f'(x)}{g'(x)}$$

provided that the limit on the right exists or is infinite.

Applying L'hopital's Rule

Indeterminate form $\frac{0}{0}$.

Evaluate

$$\lim_{x
ightarrow 0}rac{e^{2x}-1}{x}$$

Applying L'hopital's Rule

Other indeterminate forms

$$0\cdot\infty,$$
 $1^\infty,$ $\infty^0,$ $0^0,$ and $\infty-\infty$

Example:

l
$$\lim_{x \to \infty} e^{-x} \sqrt{x}$$

2 $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$

Not Indeterminate

 $\infty + \infty o \infty$

 $-\infty-\infty
ightarrow -\infty$

 $0^\infty o 0$

 $0^{-\infty} o \infty$

Solution What's Wrong?
$$\lim_{x \to 0} \frac{e^x}{x} = \frac{e^x}{1} = 1$$

Practice

