How do you determine if a sequence converges or diverges?

Quick Check

Describe a pattern for each of the following sequences. Then use your description to write a formula for the n^{th} term of each sequence.

$$1 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

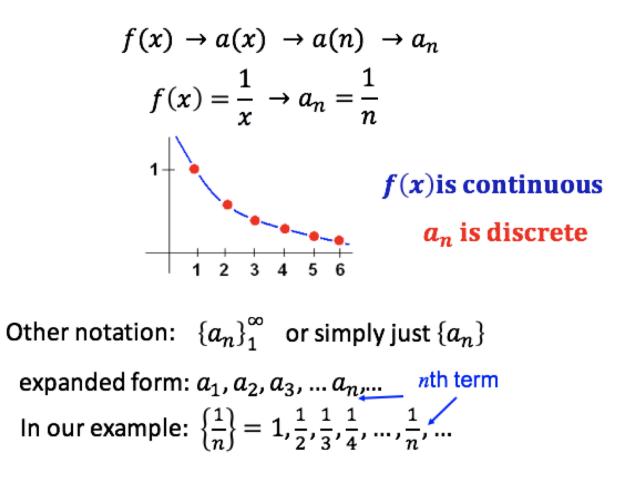
$$3 10, \frac{10}{3}, \frac{10}{6}, \frac{10}{10}, \frac{10}{15}, \dots$$

$$2 1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \dots$$

$$4 \frac{1}{4}, \frac{4}{9}, \frac{9}{16}, \frac{16}{25}, \frac{25}{36}, \dots$$

Sequence

A sequence is defined as a function whose domain is the set of positive integers.



Understanding the formula for a sequence

List the first four terms of each sequence.

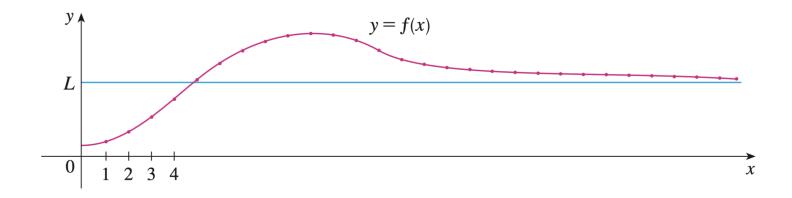
1
$$a_n = \{3 + (-1)^n\}$$

3
$$c_n=\Big\{rac{n^2}{2^n-1}\Big\}$$

2
$$b_n=\left\{rac{n}{1-2n}
ight\}$$

A Recursively defined sequence d_n , where $d_1=25$ and $d_{n+1}=d_n-5$

Limit of a Sequence



Let L be a real number. Let f be a function of a real variable such that

$$\lim_{x o\infty}f(x)=L$$

If a_n is a sequence such that $f(n) = a_n$ for every positive integer n, then

$$\lim_{n o\infty}a_n=L$$

Properties of Limits of Sequences

Let
$$\lim_{n \to \infty} a_n = L$$
 and $\lim_{n \to \infty} b_n = K$.
1. $\lim_{n \to \infty} (a_n \pm b_n) = L \pm K$
2. $\lim_{n \to \infty} ca_n = cL$, *c* is any real number
3. $\lim_{n \to \infty} (a_n b_n) = LK$
4. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{L}{K}$, $b_n \neq 0$ and $K \neq 0$

Find the limit of the sequence.

$$a_n = \left(1 + rac{1}{n}
ight)^n$$

Convergent or Divergent

1
$$a_n = \{3 + (-1)^n\}$$

3
$$c_n=\left\{rac{n^2}{2^n-1}
ight\}$$

$$\ \ \, \mathbf{2} \ \, b_n = \Big\{ \frac{n}{1-2n} \Big\}$$

4
$$b_n = \left\{ (-1)^n \frac{1}{n!} \right\}$$

Try Squeeze Theorem

Absolute Value Theorem

For the sequence $\{a_n\}$, if

$$\lim_{n \to \infty} |a_n| = 0 \quad \text{then} \quad \lim_{n \to \infty} a_n = 0.$$

Results follow by the squeeze theorem.

$$-|a_n|\leq a_n\leq |a_n|$$

Find the n^{th} term of a Sequence

Find a sequence a_n whose first five terms are

 $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \dots$

and then determine if the sequence converges or diverges.

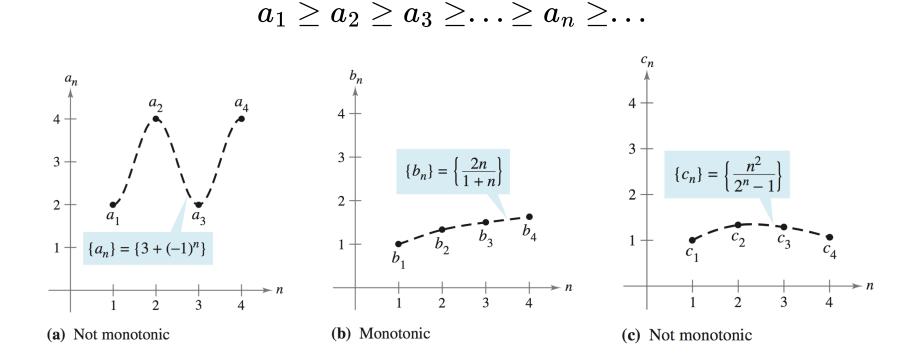
It is not possible to determine convergence from the first few terms...we really need a general formula.

Monotonic Sequences and Bounded Sequences

A sequence a_n is monotonic if its terms are nondecreasing.

$$a_1 \leq a_2 \leq a_3 \leq \ldots \leq a_n \leq \ldots$$

or if its terms are nonincreasing



primethinker.com

Determine if a sequence is monotonic

1
$$a_n = 3 + (-1)^n$$

2
$$b_n=\left\{rac{2n}{1+n}
ight\}$$

3
$$c_n=\left\{rac{n^2}{2^n-1}
ight\}$$

- 1. A sequence $\{a_n\}$ is **bounded above** if there is a real number M such that $a_n \leq M$ for all n. The number M is called an **upper bound** of the sequence.
- 2. A sequence $\{a_n\}$ is **bounded below** if there is a real number N such that $N \le a_n$ for all n. The number N is called a **lower bound** of the sequence.
- 3. A sequence $\{a_n\}$ is **bounded** if it is bounded above and bounded below.

Theorem: If a sequence is bounded and monotonic, then it converges. 🤔

Examples: Which sequence is convergent? What does this mean?

$$\blacksquare a_n = \{1/n\}$$

- **2** $b_n = \{n^2/(n+1)\}$
- 3 $c_n = \{(-1)^n\}$

Practice

Find the limit (if possible) of the sequence.

$$a_{n} = \frac{5n^{2}}{n^{2} + 2}$$

$$a_{n} = \frac{2n}{\sqrt{n^{2} + 1}}$$

$$a_{n} = \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{(2n)^{n}}$$