How do you determine if a sequence converges or diverges?

Quick Check

Describe a pattern for each of the following sequences. Then use your description to write a formula for the $n^{\text {th }}$ term of each sequence.

1 $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
$21, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \ldots$
(3 $10, \frac{10}{3}, \frac{10}{6}, \frac{10}{10}, \frac{10}{15}, \ldots$
(4) $\frac{1}{4}, \frac{4}{9}, \frac{9}{16}, \frac{16}{25}, \frac{25}{36}, \ldots$

Sequence

A sequence is defined as a function whose domain is the set of positive integers.

$$
\begin{aligned}
& f(x) \rightarrow a(x) \rightarrow a(n) \rightarrow a_{n} \\
& f(x)=\frac{1}{x} \rightarrow a_{n}=\frac{1}{n} \\
& f(x) \text { is continuous } \\
& \\
& \\
& \\
& \\
& \\
& 1
\end{aligned}
$$

Other notation: $\left\{a_{n}\right\}_{1}^{\infty}$ or simply just $\left\{a_{n}\right\}$
expanded form: $a_{1}, a_{2}, a_{3}, \ldots a_{n}, \ldots \quad n$th term
In our example: $\left\{\frac{1}{n}\right\}=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots$

Understanding the formula for a sequence

List the first four terms of each sequence.
$1 a_{n}=\left\{3+(-1)^{n}\right\}$
$2 b_{n}=\left\{\frac{n}{1-2 n}\right\}$
$3 c_{n}=\left\{\frac{n^{2}}{2^{n}-1}\right\}$

4 Recursively defined sequence d_{n}, where $d_{1}=25$ and $d_{n+1}=d_{n}-5$

Limit of a Sequence

Let L be a real number. Let f be a function of a real variable such that

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

If a_{n} is a sequence such that $f(n)=a_{n}$ for every positive integer n, then

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Properties of Limits of Sequences

Let $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=K$.

1. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm K$
2. $\lim _{n \rightarrow \infty} c a_{n}=c L, c$ is any real number
3. $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L K$
4. $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{K}, b_{n} \neq 0$ and $K \neq 0$

Find the limit of the sequence.

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

Convergent or Divergent

$1 a_{n}=\left\{3+(-1)^{n}\right\}$
$2 b_{n}=\left\{\frac{n}{1-2 n}\right\}$
$3 c_{n}=\left\{\frac{n^{2}}{2^{n}-1}\right\}$
$4 b_{n}=\left\{(-1)^{n} \frac{1}{n!}\right\}$
Try Squeeze Theorem

Absolute Value Theorem

For the sequence $\left\{a_{n}\right\}$, if

$$
\lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \quad \text { then } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

Results follow by the squeeze theorem.

$$
-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|
$$

Find the $n^{\text {th }}$ term of a Sequence

Find a sequence a_{n} whose first five terms are $\frac{2}{1}, \frac{4}{3}, \frac{8}{5}, \frac{16}{7}, \frac{32}{9}, \ldots$
and then determine if the sequence converges or diverges.

Monotonic Sequences and Bounded Sequences

A sequence a_{n} is monotonic if its terms are nondecresing.

$$
a_{1} \leq a_{2} \leq a_{3} \leq \ldots \leq a_{n} \leq \ldots
$$

or if its terms are nonincreasing

$$
a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq a_{n} \geq \ldots
$$

(a) Not monotonic

(b) Monotonic

(c) Not monotonic

Determine if a sequence is monotonic

$1 a_{n}=3+(-1)^{n}$
$2 b_{n}=\left\{\frac{2 n}{1+n}\right\}$
$3 c_{n}=\left\{\frac{n^{2}}{2^{n}-1}\right\}$

Definition of a Bounded Sequence

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a real number M such that $a_{n} \leq M$ for all n. The number M is called an upper bound of the sequence.
2. A sequence $\left\{a_{n}\right\}$ is bounded below if there is a real number N such that $N \leq a_{n}$ for all n. The number N is called a lower bound of the sequence.
3. A sequence $\left\{a_{n}\right\}$ is bounded if it is bounded above and bounded below.

Bounded Monotonic Sequences

Theorem: If a sequence is bounded and monotonic, then it converges.

Examples: Which sequence is convergent? What does this mean?
$1 a_{n}=\{1 / n\}$
$2 b_{n}=\left\{n^{2} /(n+1)\right\}$
$3 c_{n}=\left\{(-1)^{n}\right\}$

Practice

Find the limit (if possible) of the sequence.

$$
1 a_{n}=\frac{5 n^{2}}{n^{2}+2}
$$

$$
3 b_{n}=\sin \frac{1}{n}
$$

$2 a_{n}=\frac{2 n}{\sqrt{n^{2}+1}}$

$$
4 c_{n}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(2 n)^{n}}
$$

