What does it mean to say that a series converges?

Quick Check - True / False. Explain.

1 If $\left\{a_{n}\right\}$ converges to 3 and $\left\{b_{n}\right\}$ converges to 2 , then $\left\{a_{n}+b_{n}\right\}$ converges to 5 .

2 If $\left\{a_{n}\right\}$ converges, then $\left\{\frac{a_{n}}{n}\right\}$ converges to 0 .

3 If $\left\{a_{n}\right\}$ converges, then $\lim _{n \rightarrow \infty}\left(a_{n}-a_{n-1}\right)=0$.

Series

If $\left\{a_{n}\right\}$ is an infinite sequence, then

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots
$$

To find the sum of the infinite series, consider the sequence of partial sums $S_{1}=a_{1}$
$S_{2}=a_{1}+a_{2}$
$S_{3}=a_{1}+a_{2}+a_{3}$
$n^{\text {th }}$ partial sum
$S_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}$
If this sequence of partial sums converges, the series is said to converge.

Convergent and Divergent Series

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\ldots \\
& S_{1}= \\
& S_{2}= \\
& S_{3}= \\
& \vdots \\
& S_{n}=
\end{aligned}
$$

Does the sequence of partial sums converge? What is the sum of the infinite series?

Partial Sums and Convergence

$\sum_{n=1}^{\infty} 1=1+1+1+1+1+1+\ldots$ converges or diverges? What is your reasoning?

Telescoping Series

The $n^{\text {th }}$ partial sum of the series
$\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=+\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots$
is given by
$s_{n}=1-\frac{1}{n+1}$
Does this series converge? If so, what is the sum?

Telescoping series

$$
\left(b_{1}-b_{2}\right)+\left(b_{2}-b_{3}\right)+\left(b_{3}-b_{4}\right)+\left(b_{4}-b_{5}\right)+\ldots
$$

Observe $n^{\text {th }}$ partial sum is $S_{n}=b_{1}-b_{n+1}$. Telescoping series will converge if and only if b_{n} approaches a finite number as $n \rightarrow \infty$. If the series converges, its sum is

$$
S=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}
$$

Find the sum of the series.

$$
\sum_{n=1}^{\infty} \frac{2}{4 n^{2}-1}
$$

Geometric Series

$\sum_{n=1}^{\infty} a r^{n}=a+a r+a r^{2}+\cdots+a r^{n}+\ldots \quad a \neq 0$
1 A geometric series with ratio r diverges if $|r| \geq 1$.
2 If $0<|r|<1$, then the series converges to the sum

$$
\sum_{n=1}^{\infty} a r^{n}=\frac{a}{1-r}
$$

Convergent and Divergent Geometric Series

$1 \quad \sum_{n=0}^{\infty} \frac{3}{2^{n}}$
Common Ratio $=$
$a=$
$S=\frac{a}{1-r}=$
$2 \quad \sum_{n=0}^{\infty}\left(\frac{3}{2}\right)^{n}$
Common Ratio $=$
$a=$

$$
S=\frac{a}{1-r}=
$$

Repeating Decimal \rightarrow geometric series

Use a geometric series to write $0 . \overline{08}$ as the ratio of two integers.

Properties of Infinite Series

If $\sum a_{n}=A, \quad \sum b_{n}=B$, and c is a real number, then the following series converge to the indicated sums.
$1 \sum_{n=1}^{\infty} c \cdot a_{n}=c A$
$2 \sum_{n=1}^{\infty} a_{n}+b_{n}=A+B$
$3 \sum_{n=1}^{\infty} a_{n}-b_{n}=A-B$

Thinking about convergence of a series

If $\sum_{n=1}^{\infty} a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
\leq If a sequence a_{n} converges to 0 , then the series may either converge or diverge.

$n^{t h}-$ Term test for Divergence

$$
\text { If } \lim _{n \rightarrow \infty} a_{n} \neq 0 \text {, then } \sum_{n=1}^{\infty} a_{n} \text { diverges. }
$$

Examples:

$1 \sum_{n=0}^{\infty} 2^{n}$

$$
2 \sum_{n=1}^{\infty} \frac{n!}{2 n!+1}
$$

$$
3 \sum_{n=1}^{\infty} \frac{1}{n}
$$

Practice

Determine the convergence or divergence of the series using any method.

1. $\sum_{n=1}^{\infty} \frac{n+10}{10 n+1}$
$2 \quad \sum_{n=1}^{\infty} \frac{1}{n \cdot(n+3)}$
(3) $\sum_{n=0}^{\infty} \frac{4}{2^{n}}$
