How can we use comparison of series to determine whether a series converges or diverges?

Quick Check

Determine the convergence or divergence of the series.

4
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}$$
5
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^n$$
6
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^3}$$

Comparison of Series

The second series cannot be tested by the same convergence test as the first series even though it is similar to the first.

1
$$\sum_{n=0}^{\infty} \frac{1}{2^n}$$
 is geometric, but $\sum_{n=0}^{\infty} \frac{n}{2^n}$ is NOT.
2 $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is a p -series, but $\sum_{n=1}^{\infty} \frac{1}{n^3 + 1}$ is NOT.
3 $a_n = \frac{n}{(n^2 + 3)^2}$ is easily integrated, but $b_n = \frac{n^2}{(n^2 + 3)^2}$ is NOT.

Allows you to compare a **positive termed** series with complicated terms with a simpler series whose convergence or divergence is known.

Let
$$0 < a_n < b_n$$
 for all n .

l If
$$\sum\limits_{n=1}^\infty b_n$$
 converges, then $\sum\limits_{n=1}^\infty a_n$ converges.

If the 'larger' series converges, the 'smaller' series must also converge.

2 If
$$\sum\limits_{n=1}^\infty a_n$$
 diverges, then $\sum\limits_{n=1}^\infty b_n$ diverges.

If the 'smaller' series diverges, the 'larger' series must also diverge.

Direct Comparison Test

Determine the convergence or divergence.

2
$$\sum_{n=1}^\infty rac{1}{2+\sqrt{n}}$$

Limit Comparison Test

Suppose a_n and b_n are positive termed series.

$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = L$$

where L is finite and positive. Then the two series either both converge or both diverge.

Example:

Does
$$\sum\limits_{n=1}^{\infty} rac{1}{an+b}$$
 where a and b are positive, converge or diverge

Practice

Determine the convergence or divergence.

l
$$\sum_{n=1}^{\infty}rac{1}{3n^2-4n+5}$$
 compare with $\sum_{n=1}^{\infty}rac{1}{n^2}.$

2
$$\sum_{n=1}^{\infty} rac{1}{\sqrt{3n-2}}$$
 compare with $\sum_{n=1}^{\infty} rac{1}{\sqrt{n}}$.

3
$$\sum\limits_{n=1}^\infty rac{n^2-10}{4n^5+n^3}$$
 compare with $\sum\limits_{n=1}^\infty rac{n^2}{n^5} o \sum\limits_{n=1}^\infty rac{1}{n^3}.$

Practice

Determine the convergence or divergence.

$$4 \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

5
$$\sum_{n=1}^{\infty} rac{n2^n}{4n^3+1}$$