How can we use comparison of series to determine whether a series converges or diverges??

Quick Check

Determine the convergence or divergence of the series.
$1 \sum_{n=1}^{\infty} \frac{1}{2 n-1}$
$2 \sum_{n=1}^{\infty} \frac{1}{n \sqrt[4]{n}}$
$\underset{\text { primethink }_{n}{ }_{n=0} \sum_{0}^{\infty}}{\infty}\left(\frac{2}{3}\right)^{n}$

$$
\begin{aligned}
& 4 \sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}} \\
& 5 \sum_{n=1}^{\infty}\left(1+\frac{1}{\sqrt{n}}\right)^{n} \\
& 6 \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}
\end{aligned}
$$

Comparison of Series

The second series cannot be tested by the same convergence test as the first series even though it is similar to the first.
$1 \sum_{n=0}^{\infty} \frac{1}{2^{n}}$ is geometric, but $\sum_{n=0}^{\infty} \frac{n}{2^{n}}$ is NOT.
$2 \sum_{n=1}^{\infty} \frac{1}{n^{3}}$ is a p-series, but $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$ is NOT.
$3 a_{n}=\frac{n}{\left(n^{2}+3\right)^{2}}$ is easily integrated, but $b_{n}=\frac{n^{2}}{\left(n^{2}+3\right)^{2}}$ is NOT.

Direct Comparison Test

Allows you to compare a positive termed series with complicated terms with a simpler series whose convergence or divergence is known.

Let $0<a_{n}<b_{n}$ for all n.
1 If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges.
If the 'larger' series converges, the 'smaller' series must also converge.
2 If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
If the 'smaller' series diverges, the 'larger' series must also diverge.

Direct Comparison Test

Determine the convergence or divergence.
[$\sum_{n=1}^{\infty} \frac{1}{2+3^{n}}$
$2 \sum_{n=1}^{\infty} \frac{1}{2+\sqrt{n}}$

Limit Comparison Test

Suppose a_{n} and b_{n} are positive termed series.
$\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=L$
where L is finite and positive. Then the two series either both converge or both diverge.

Example:

Does $\sum_{n=1}^{\infty} \frac{1}{a n+b}$ where a and b are positive, converge or diverge.

Practice

Determine the convergence or divergence.
$1 \sum_{n=1}^{\infty} \frac{1}{3 n^{2}-4 n+5}$ compare with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
$2 \sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-2}}$ compare with $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
$3 \sum_{n=1}^{\infty} \frac{n^{2}-10}{4 n^{5}+n^{3}}$ compare with $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{5}} \rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{3}}$.

Practice

Determine the convergence or divergence.
4 $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{2}+1}$
$5 \sum_{n=1}^{\infty} \frac{n 2^{n}}{4 n^{3}+1}$

