How do we deal with series that don't have just positive terms?

Quick Check

Consider the sequence
$$a_n = \dfrac{1}{(2n+1)^3}$$

- a. Find $\lim_{n \to \infty} a_n$
- b. Find the first four partial sums for the series $\sum_{n=1}^{\infty} a_n$
- c. Use the Integral Test to determine if $\sum\limits_{n=1}^{\infty}a_n$ converges or diverges.

Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum\limits_{n=1}^{\infty}(-1)^{n}a_{n}$$
 and $\sum\limits_{n=1}^{\infty}(-1)^{n+1}a_{n}$

converge if the following two conditions are met

- $\lim_{n o\infty}a_n=0$
- $2 a_{n+1} \leq a_n$ for all n.

Using the Alternating Series Test

Determine the convergence or divergence of each series.

$$\sum_{n=0}^{\infty} \left(-\frac{1}{2} \right)^n = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

write out few terms

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

$$\sum_{n=1}^{\infty} \frac{n}{(-2)^{n-1}}$$

Case for which the Alternating Series Test fails

Determine the convergence or divergence of the following series.

$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{n+1}{n} = \frac{2}{1} - \frac{3}{2} + \frac{4}{3} - \frac{5}{4} + \frac{6}{5} - \dots$$

4

Alternating Series Remainder

If a convergent alternating series satisfies the conditions $a_{n+1} \leq a_n$, then the absolute value of the remainder R_n involved in approximating the sum S by S_N is less than or equal to the first neglected term. That is,

$$|S - S_N| = |R_N| \le a_{N+1}$$

Example: Approximate the sum of the following series by its first six terms.

$$\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n!}$$

primethinker.com

Practice

Determine the convergence or divergence of the series.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2n-1}$$
 3 $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2+1}$ 5 $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$

$$\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^2 + 1}$$

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$$

$$2\sum_{n=1}^{\infty}\frac{(-1)^n}{\ln(n+1)} \qquad 4\sum_{n=1}^{\infty}\frac{1}{n}\cdot\cos(n\pi) \qquad 5\sum_{n=1}^{\infty}\frac{1}{n}\cdot\sin\left(\frac{(2n-1)\pi}{2}\right)$$

Approximate the sum of the series using the first six terms.

$$\sum_{n=1}^{\infty} rac{(-1)^{n+1}n}{2^n}$$