What does it mean to say that a series is 'conditionally convergent' or 'absolutely convergent'?

Quick Check

Write out a few terms of the following series. Are the terms all positive, negative, or alternating? Explain.
$\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$

Absolute Convergence

If the series $\sum\left|a_{n}\right|$ converges, then the series $\sum a_{n}$ also converges.
! The converse is not true.

Example

$\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}$

Absolute and Conditional Convergence

$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$
The alternating harmonic series converges by the alternating series test but $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is conditionally convergent.
$1 \sum a_{n}$ is absolutely convergent if $\sum\left|a_{n}\right|$ converges.
$2 \sum a_{n}$ is conditionally convergent if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Practice

Determine whether each of the series is convergent or divergent. Classify any convergent series as absolutely or conditionally convergent.
$1 \sum_{n=0}^{\infty} \frac{(-1)^{n} n!}{2^{n}}$
$2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
$3 \sum_{n=1}^{\infty} \frac{(-1)^{n(n+1) / 2}}{3^{n}}$

Practice

Determine whether the series converges conditionally or absolutely, or diverges.
$1 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(n+1)^{2}}$
$2 \sum_{n=2}^{\infty} \frac{\cos n \pi}{n+1}$

Ratio Test

Let $\sum a_{n}$ be a series with nonzero terms.
$1 \sum a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1$.
$2 \sum a_{n}$ diverges if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ or $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\infty$
3 The Ratio Test is inclusive if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=1$

Example and Practice

Determine the convergence and divergence.
$1 \sum_{n=0}^{\infty} \frac{2^{n}}{n!}$
$2 \sum_{n=0}^{\infty} \frac{n^{2} 2^{n+1}}{3^{n}}$
(3) $\sum_{n=1}^{\infty} \frac{n^{n}}{n!}$
$4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n}}{n+1}$

Root Test

Let $\sum a_{n}$ be a series.
$1 \sum a_{n}$ converges absolutely if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1$
$2 \sum a_{n}$ diverges if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$
3 The Root Test is inconclusive if $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=1$

Determine the convergence or divergence of $\sum_{n=1}^{\infty} \frac{e^{2 n}}{n^{n}}$.

Guidelines for testing a series for convergence or divergence

1. Does the $n^{\text {th }}$ term approach 0 ? If not, the series diverges.
2. Is the series one of the special types - geometric, p-series, telescoping, or alternating?
3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
4. Can the series be compared favorably to one of the special types?
$1 \sum_{n=1}^{\infty} \frac{n+1}{3 n+1}$
$2 \sum_{n=1}^{\infty}\left(\frac{\pi}{6}\right)^{n}$
(3) $\sum_{n=1}^{\infty} n e^{-n^{2}}$
$4 \sum_{n=1}^{\infty}(-1)^{n} \frac{3}{4 n+1}$
$5 \sum_{n=1}^{\infty} \frac{n!}{10^{n}}$
6 $\sum_{n=1}^{\infty}\left(\frac{n+1}{2 n+1}\right)^{n}$
