How do we find power series representations of functions?

Quick Check

Determine whether the following series converges. If it does, find the sum.
$\sum_{n=0}^{\infty} 6\left(\frac{4}{5}\right)^{n}$

Power series representation

Recall Geometric Series
$\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}, \quad|r|<1$

Consider $f(x)=\frac{1}{1-x}$
$\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
Of course, this series represents $f(x)$ only on the interval $(-1,1)$. To represent another interval, you must develop another series.

Practice

1 Find a power series for $f(x)=\frac{4}{x+2}$, centered at 0 . What is the interval of convergence.

2 Find a geometric power series centered at 1 for $f(x)=\frac{1}{x}$. Then, find the interval of convergence.

3 Use partial fractions to break the function, then represent it by adding two geometric power series. The interval of convergence is the intersection of individual intervals.
$f(x)=\frac{3 x-1}{x^{2}-1} \quad c=0$

Finding a Power Series by Integration

4 Find a power series for $f(x)=\ln x$, centered at 1 .
5 Find a power series for $g(x)=\arctan x$, centered at 0 .

More Practice.
6 Find a power series for $f(x)=\frac{1}{2-x}, c=5$. Find the interval of convergence.
7 Find the power series for $f(x)=\frac{3 x}{x^{2}+x-2} \quad c=0$.

