How can we use a basic list of Taylor Series to find other Taylor Series?

Quick Check

Find the n^{th} Maclaurin Polynomial expressions for each of the following functions.

$$2 g(x) = \cos x$$

1

Power Series for elementary functions

Power Series for Elementary Functions

Function	Interval of Convergence
$\frac{1}{x} = 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + (x - 1)^4 - \dots + (-1)^n (x - 1)^n + \dots$	0 < x < 2
$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \dots + (-1)^n x^n + \dots$	-1 < x < 1
$\ln x = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(-1)^{n-1}(x-1)^n}{n} + \dots$	$0 < x \le 2$
$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + \dots + \frac{x^{n}}{n!} + \dots$	$-\infty < x < \infty$
$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$	$-\infty < x < \infty$
$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$	$-\infty < x < \infty$
$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} - \dots + \frac{(-1)^n x^{2n+1}}{2n+1} + \dots$	$-1 \le x \le 1$
$\arcsin x = x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \dots + \frac{(2n)! x^{2n+1}}{(2^n n!)^2 (2n+1)} + \dots$	$-1 \le x \le 1$
$(1+x)^k = 1 + kx + \frac{k(k-1)x^2}{2!} + \frac{k(k-1)(k-2)x^3}{3!} + \frac{k(k-1)(k-2)(k-3)x^4}{4!} + \cdots$	-1 < x < 1*

^{*} The convergence at $x = \pm 1$ depends on the value of k.

Examples and Practice

lacksquare Find the Maclaurin Series for $f(x)=\sin(x^2)$.

- 2 Find the power series for $f(x) = \cos(\sqrt{x})$. your turn
- $oxed{3}$ Find the Maclaurin series for $g(x)=e^{3x}$. your turn

- ullet Find the Taylor series centered at c=1 for $f(x)=e^{2x}$. Find derivatives...
- 5 Find the first three nonzero terms in the maclaurin series for $e^x \arctan x$.

3