How are parametric equations used to model motion?

Quick Check

1991 BC1

A particle moves on the x-axis so that its velocity any time $t \geq 0$ is given by $v(t)=12 t^{2}-36 t+15$. At $t=1$, the particle is at the origin.
a. Find the position $x(t)$ of the particle at any time $t \geq 0$.
b. Find all values of t for which the particle is at rest.
c. Find the maximum velocity of the particle for $0 \leq t \leq 2$.
d. Find the total distance travelled by the particle from $t=0$ to $t=2$.
e. Find the average velocity of the particle over the interval $0 \leq t \leq 2$.

Imagine an ant walking on a $x y$-plane?

You stand there with a watch observing and recording its position for 5 minutes.

How would you represent the position in the $x y$-plane as a function of time?

Definition of a Plane Curve

If f and g are continuous functions of t on an interval I, then the equations $x=f(t)$ and $y=g(t)$ are called parametric equations and t is called the parameter.

Sketch the curve described by the parametic equations $x(t)=t^{2}-4$ and $y(t)=\frac{t}{2}$ where $-2 \leq t \leq 3$

t	-2	-1	0	1	2	3
x						
y						

Eliminating the parameter

$\left.\begin{array}{l}\begin{array}{l}\text { Parametric } \\ \text { equations }\end{array} \\ \square\end{array} \begin{array}{l}\text { Solve for } t \text { in } \\ \text { one equation. }\end{array} \quad \square \begin{array}{l}\begin{array}{l}\text { Substitute into } \\ \text { second equation. }\end{array} \\ \begin{array}{l}x=t^{2}-4 \\ y=t / 2\end{array} \\ t=2 y\end{array} \quad x=(2 y)^{2}-4 \quad \begin{array}{l}\text { Rectangular } \\ \text { equation }\end{array}\right] \quad x=4 y^{2}-4$

Sketch the curve represented by the equations
$x=\frac{1}{\sqrt{t+1}}$ and $y=\frac{t}{t+1}, \quad t>-1$
by eliminating the parameter and adjusting the domain of the resulting equation.

Using trigonometry to eliminate a parameter

Sketch the curve represented by
$x=3 \cos \theta$ and $y=4 \sin \theta, \quad 0 \leq \theta \leq 2 \pi$
by eliminating the parameter and finding the corresponding rectangular equation.

Tangent to a parametric curve

If a smooth curve is given by the equations $x=f(t)$ and $y=g(t)$, then the slope of the curve at (x, y) is

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t} \quad \text { where } \quad \frac{d x}{d t} \neq 0
$$

Example:
Find the slope of the curve given by $x=\sin t$ and $y=\cos t$.

Higher order derivatives

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{d x / d t} \\
\frac{d^{3} y}{d x^{3}}=\frac{d}{d x}\left[\frac{d^{2} y}{d x^{2}}\right]=\frac{\frac{d}{d t}\left[\frac{d^{2} y}{d x^{2}}\right]}{d x / d t}
\end{gathered}
$$

Finding slope and concavity
For the curve given by
$x=\sqrt{t}$ and $y=\frac{1}{4}\left(t^{2}-4\right), \quad t \geq 4$
find the slope and concavity at the point $(2,3)$

Arc Length in Parametric Form

A smooth, non-intersecting curve on an interval $[a, b]$ has arclength

$$
s=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example:
Find the arclength of the curve given by $x=t^{2}$ and $y=2 t$ on the interval $0 \leq t \leq 2$.

Motion

$\langle x(t), y(t)\rangle$ is the position vector at any time t.
$\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ is the velocity vector.
$\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$ is the acceleration vector.
$\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$ is the speed or magnitude of the velocity vector.
$\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
is the length of the arc of the curve and represents the total distance travelled by the particle on the interval.

Practice

1 A particle moves in the $x y$-plane so that at any time t, the position is given by $x(t)=t^{3}+4 t^{2}$ and $y(t)=t^{4}-t^{3}$.
a. Find the velocity vector when $t=1$.
b. What is the speed at $t=1$.
c. Find the acceleration vector when $t=2$.

Practice

2 An object moving along a curve in $x y$-plane has position $\langle x(t), y(t)\rangle$ at time t with $\frac{d x}{d t}=\sin \left(t^{3}\right), \frac{d y}{d t}=\cos \left(t^{2}\right)$. At time $t=2$, the object is at the postion $(1,4)$.
a. Find the acceleration vector for the particle at $t=2$.
b. Write the equation of the tangent line to the curve at the point where $t=2$.
c. Find the speed of the vector at $t=2$.
d. Find the position of the particle at time $t=1$.

