How does the Polar Coordinate System work?

Quick Check

How would a crow go from point A in Manhattan to Point B in Manhattan?

Would the crow follow the directions from google maps like a car?

Directions from a different point of view

r is the distance from O to P

 θ is the angle between the polar axis and the segment \overline{OP}

Example:

Reading Polar Graphs

3

Reading Polar Graphs

Polar axis $P(3, 5\pi/4)$ $P(3, 5\pi/4)$ Polar axis $P(3, 5\pi/4)$ Polar axis

Note: $(-3, \pi/4) = (3, \pi/4 + \pi)$. There are multiple representations for one point.

Practice

Plot the points whose polar coordinates are given.

a.
$$(1,5\pi/4)$$

b.
$$(2, 3\pi)$$

c.
$$(2, -2\pi/3)$$

d.
$$(-3,3\pi/4)$$

Rectangular \longleftrightarrow Polar Coordinates

The polar coordinates (r,θ) of a point are related to the rectangular coordinates (x,y) as follows:

$$x = r \cos \theta$$
 $y = r \sin \theta$

$$r^2 = x^2 + y^2$$

Coordinate Conversion

Polar to Rectangular conversion

a.
$$(r, heta) = (2, \pi)$$

b.
$$(r, heta)=(\sqrt{3},\pi/6)$$

Rectangular to Polar Conversion

c.
$$(x,y) = (-1,1)$$

d.
$$(x,y) = (0,2)$$

Converting Equations

- lacktriangledown Express the equation $x^2=4y$ in polar form.
- 2 Convert $x^2 + y^2 = 9$ to polar form. try
- $oxed{3}$ Convert $r=5\sec heta$ to rectangular form.
- 4 Convert $r=2\sin\theta$ to rectangular form. try
- $oldsymbol{5}$ Convert $r=2+2\cos heta$ to rectangular form.
- 6 Convert $r=\sqrt{5}$ to rectangular form. ${
 m try}$

Polar Graphs

Match the equation to the graph.

a.
$$r=2$$

b.
$$heta=rac{\pi}{3}$$

c.
$$r=\sec heta$$

Rose Curve

Sketch the graph of $r=2\cos3 heta$

