How do we find tangent lines to polar graphs?

Quick Check

Sketch on Polar Graph paper.
$1 r=3$
$2 \theta=\pi / 3$
$3 r=2 \sin \theta$
4 $r=3(1+\cos \theta)$

Sketching using sine or cosine

curve

Sketch $r=\cos 2 \theta$

Slope in Polar Form

To find the slope of a tangent line to a polar graph, consider a differentiable function given by $r=f(\theta)$. Use the parametric equations
$x=r \cos \theta=f(\theta) \cos \theta \quad$ and $\quad y=r \sin \theta=f(\theta) \sin \theta$
then use the parametric form of the derivative.

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}
$$

Example

Find the horizontal and vertical tangent lines to $r=\sin \theta$ on $0 \leq \theta \leq \pi$.

Note:
1 Horizontal tangents are solutions to $\frac{d y}{d \theta}=0$
2 Vertical tangents are solutions to $\frac{d x}{d \theta}=0$, as long as $\frac{d y}{d \theta} \neq 0$.

Practice

Find the horizontal and vertical tangents to the graph of $r=2(1-\cos \theta)$.
graph and check your answer

Tangent Lines at the Pole

Algebraically find the equations of the tangents at the pole for $r=2 \cos 2 \theta$.

Area of a Polar Region

The area of a sector of a circle is $A=\frac{1}{2} \theta r^{2}$

If f is continuous and non-negative on $[\alpha, \beta]$ and $0 \leq \beta-\alpha \leq 2 \pi$,

$$
\text { Area }=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta
$$

Example

1. Find the area of one petal of the rose curve given by $r=3 \cos 3 \theta$. Start by sketching the region first.
2. Find the area of the region lying between the inner and outer loops of the limacon $r=1-2 \sin \theta$.

Setup the integral that represents the area of the region

$1 r=\cos 2 \theta$

2 Common interior of $r=4 \sin 2 \theta$ and $r=2$

