How do we find tangent lines to polar graphs?

Quick Check

Sketch on Polar Graph paper.

1 r = 3

 $\theta = \pi/3$

 $r = 2\sin\theta$

Sketching using sine or cosine curve

Sketch $r=\cos 2\theta$

Slope in Polar Form

To find the slope of a tangent line to a polar graph, consider a differentiable function given by $r=f(\theta).$ Use the parametric equations

$$x = r\cos heta = f(heta)\cos heta$$
 and $y = r\sin heta = f(heta)\sin heta$

then use the parametric form of the derivative.

$$rac{dy}{dx} = rac{dy/d heta}{dx/d heta}$$

Example

Find the horizontal and vertical tangent lines to $r=sin\theta$ on $0\leq\theta\leq\pi$.

Note:

- $oxed{1}$ Horizontal tangents are solutions to $\dfrac{dy}{d heta}=0$
- $oxed{2}$ Vertical tangents are solutions to $\dfrac{dx}{d heta}=0$, as long as $\dfrac{dy}{d heta}
 eq 0$.

Practice

Find the horizontal and vertical tangents to the graph of $r=2(1-cos\theta)$.

graph and check your answer

Tangent Lines at the Pole

If f(a)=0 and $f'(a)\neq 0$, then the line $\theta=a$ is tangent at the pole to the graph of $r=f(\theta)$

Algebraically find the equations of the tangents at the pole for $r=2\cos2\theta$.

Area of a Polar Region

The area of a sector of a circle is $A = \frac{1}{2}\theta r^2$

If f is continuous and non-negative on [lpha,eta] and $0\leq eta-lpha\leq 2\pi$,

$$Area = rac{1}{2}\int\limits_{lpha}^{eta} r^2 d heta$$

Example

- 1. Find the area of one petal of the rose curve given by $r=3\cos 3\theta$. Start by sketching the region first.
- 2. Find the area of the region lying between the inner and outer loops of the limacon $r=1-2\sin\theta$.

Setup the integral that represents the area of the region

 $oxed{2}$ Common interior of $r=4\sin2 heta$ and r=2