Q: Why do you think it is essential to know the W's and H of the data?

The Three Rules of Data Analysis

\qquad

The three rules of data analysis won't be difficult to remember: \qquad

- Make a picture-things may be revealed that are not obvious in the raw data. These will be things to think about.
- Make a picture-important features of and patterns in the data
\qquad
\qquad will show up. You may also see things that you did not expect.
- Make a picture-the best way to tell others about your data is with a well-chosen picture. \qquad

What pictures?
What kind of pictures?
Are there different pictures for different type of variables?
11:40 on the night of April 14, 1912
WHO People on the Titanic
WHAT Survival status, age, sex, ticket class
WHEN April 14, 1912
WHERE North Atlantic
HOW A variety of sources and Internet sites
WHY Historical interest

1. Make piles - Frequency Tables

- We can "pile" the data by counting the number of data values in each category of interest.
- We can organize these counts into a frequency table, which records the totals and the category names.

Titanic Passengers	
Class	
First	Count
Second	325
Third	285
Crew	706

2. Relative Frequency Table - gives the percentages (instead of counts) for each category.

Titanic Passengers

Class	$\%$
First	14.77
Second	12.95
Third	32.08
Crew	40.21

\qquad

Distribution:

The frequency tables give us the distribution of the categorical variables. They name the possible categories and tell us how frequently each occurs.
\qquad
3. Bar Chart - shows a bar whose area represents the count (or percentage) of observations for each category of the categorical variables.

\qquad
\qquad
\qquad
\qquad
\qquad

Relative Frequency Bar Chart - replace counts with
\qquad
\qquad percentages

\qquad

Advantages and Disadvantages of Bar Charts

Advantages	Disadvantages
Summarize large data	Can be manipulated to yield false set in visual form arressions (via frangement of bars for example)
Clarify trends better than do tables	Can fail to reveal key patterns
Estimate key values	
at a glance	
Can compare two or three data sets	
Be easily understood	

\qquad
4. Pie Charts - shows how a "whole" divides into categories. The area of each wedge of the circle corresponds to the proportion in each category.

* Notice how a different display creates a different focus for your eyes and brain.

Advantages	Disadvantages
Summarize large data	Can be manipulated to yield false set in visual form category, Total unknown, slanted pie)
Visually simpler than other graphs	no exact numerical data
Be easily understood	Too many categories are confusing
	Small or categories of similar size are a problem too. Dominating categories attract attention.

Global Warming. The Pew Research Center for the People and the Press (http://people-press.org) has asked a representative sample of U.S. adults about global warming, repeating the question over time. In January 2007, the responses reflected an increased belief that global warming is real and due to human activity. Here's a display of the percentages of respondents choosing each of the major alternatives offered:

List the errors in this display.

Sample Response

Perhaps the most obvious error is that the percentages in the pie chart only add up to 92%,when they should, of course, add up to 100%. Furthermore, the three-dimensional perspective view distorts the regions in the graph, violating the area principle. The regions corresponding to No Solid Evidence and Due to Natural Patterns should be roughly the same size, at 20% and 21% of respondents, respectively. However, the angle for the 21% region looks much bigger. Always use simple, two-dimensional graphs.
\qquad

This plot of the percentage of high-school students who engage in specified dangerous behaviors has a problem. Can you see it?

