M. Singh

Lesson 15: How can we proceed with linear regression analysis when the scatter is not 'straight enough'?

Q: Answer the following questions:

1. Are the variables quantitative? Units?

2. Identify the explanatory and response variables?

3. Describe the relationship between the variables as visible from a scatterplot. Discuss direction, strength, form, and any unusual point

4. Does the scatterplot indicate that it is appropriate to calculate the correlation? Explain.

5. Run regression and view residuals plot. Is the linear model appropriate? Explain.

		Population
	Year	(millions)
	1800	5
	1825	11
	1850	23
ts.	1875	44
	1900	76
;	1925	114
	1950	151
	1975	215
	2000	285

What are the reasons for re-expressing data:

M. Singh

2. To make the spread across different groups more similar

after re-expressing by logs

4. To make the scatter around the line in a scatterplot more consistent

Ladder of powers

Power	Name	Comment
2	Square of	Try with unimodal distributions that are
	data values	skewed to the left.
1		Data with positive and negative values
	Raw data	and no bounds are less likely to benefit
		from re-expression.
1⁄2	Square root of	Counts often benefit from a square root
	data values	re-expression.
"0"	We'll use	Measurements that cannot be negative
	logarithms here	often benefit from a log re-expression.
-1/2	Reciprocal	An uncommon re-expression, but
	square root	sometimes useful.
-1	The reciprocal	Ratios of two quantities (e.g., mph) often
	of the data	benefit from a reciprocal.

Let's try re-expressing our initial scatter.

Words of Wisdom

- Don't expect your model to be perfect.
- Don't stray too far from the ladder.
- Don't choose a model based on R² alone:
- Re-expression can straighten many bent relationships, but not those that go up then down, or down then up.

