Lesson 26: How do venn diagrams help us solve probability problems?
Define and provide an example.

1. Disjoint
2. Independent
\qquad
\qquad

\qquad
\qquad

General Addition Rule

We add the probabilities of two events and then subtract out the probability of their intersection.

$$
P(\mathbf{A} \cup \mathbf{B})=P(\mathbf{A})+P(\mathbf{B})-P(\mathbf{A} \cap \mathbf{B})
$$

A survey of college students found that 56% live in a campus residence hall, 62\% participate in a campus meal program, and 42% do both.

Question: What's the probability that a randomly selected student either lives or eats on campus?

Draw a venn diagram.

Let $\mathrm{L}=$ \{student lives on campus\} and $\mathrm{M}=$ \{student has a campus meal plan\}.
$P($ a student either lives or eats on campus $)=P(L \cup M)$

$$
\begin{aligned}
& =P(\mathrm{~L})+P(\mathrm{M})-P(\mathrm{~L} \cap \mathrm{M}) \\
& =0.56+0.62-0.42 \\
& =0.76
\end{aligned}
$$

\qquad

Maybe both

What is the probability that the bill we draw has either an odd value or a building but not both?

\qquad
\qquad

We return to our survey of college students: 56% live on campus, 62% have a campus meal program, and 42% do both? \qquad
Based on a Venn diagram, what is the probability that a randomly selected student
a) lives off campus and doesn't have a meal program?
b) lives in a residence hall but doesn't have a meal program?

```
Let L = {student lives on campus} and M = {student has a campus meal plan}. In the
Venn diagram, the intersection of the circles is P(L\capM)=0.42. Since P(L)=0.56,
P(L\cap M ' ) = 0.56-0.42 = 0.14. Also, P(LL\cap M ) = 0.62-0.42 =0.20. Now,
0.14+0.42+0.20=0.76, leaving 1-0.76=0.24 for the region outside both
circles.
Now ...P(off campus and no meal program) }=P(\mp@subsup{L}{}{C}\cap\mp@subsup{M}{}{C})=0.2
    P(on campus and no meal program) }=P(L\cap\mp@subsup{M}{}{C})=0.1
```


\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Police report that 78\% of drivers stopped on suspicion of drunk driving are given a breath test, 36\% a blood test, and 22% both tests.
Question:What is the probability that a randomly selected DWI suspect is given

1. a test?
2. a blood test or a breath test, but not both?
3. neither test?
