Lesson 31: What is a sampling distribution model?

Two polls at the same time \qquad
Do you believe in ghosts?

1. 2005 Harris Poll

- 889 adults
- 40% said they believed in ghosts

2. CBS News Poll

- 808 adults
- 48% said they believed in ghosts
\qquad

Q Why do sample proportions vary? \qquad
A samples are composed of diff. people
Q What is the true population proportion???
Q How much variability can I expect from sample to
sample?
Simulation - pretend samples to get an
A understanding. Imagine taking thousands of samples and plotting the sample proportions.

A histogram of sample proportions for 2000 simulated samples of 808 adults drawn from a population with $p=.45$ The sample proportions vary, but their distribution is centered at the true proportion, p

True population proportion is our goal
Sampling distribution
shows what we could expect if we could see all the proportions from all the possible samples.
(Note: Sample proportion is a random variable.)

Expect the histogram to be unimodal, symmetric, and centered at p

1
shape reminds of normal model
1 \qquad
call it a sampling distribution model : allows us to think about how likely it is for us to observe a sample proportion in any particular interval.

Recall, normal modal requires two parameters $N(\mu, \sigma)$

Sampling distribution model requires $N\left(p, \sqrt{\frac{p q}{n}}\right)$

\qquad
\qquad
\qquad
\qquad

But we run simulations supposing we know the population proportion, so....

We don't know the true population proportion. \qquad
$\hat{p}=\frac{\# \text { successes }}{\# \text { trials }}$
\oportion of successes

$$
\begin{aligned}
& \mu(\hat{p})=p \\
& \sigma(\hat{p})=\sqrt{\frac{p q}{n}}
\end{aligned}
$$

\qquad
observed proportion from our data
our estimate for actual p \qquad
\qquad

Recall Binomial Probability
$\sigma(\hat{p})=\frac{\sqrt{n p q}}{n}=\sqrt{\frac{p q}{n}}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Back to ghosts

suppose $p=45 \%$

$\left.\begin{array}{l}\mu(\hat{p})=p=.45 \\ \sigma(\hat{p})=\sqrt{\frac{p q}{n}}=\end{array}\right\} \quad N(.45, .0175)$
\qquad
\qquad
\qquad

CBS poll is within two standard deviations of p guess. Our model says 95% of all sample proportions will fall between 41% and 48.5%. \qquad
What we observed in ghosts poll was just sampling variablility.
\qquad

[^0]\qquad
This model is better with larger sample size. \qquad

Ghosts -> 2 or 3 individuals are just not a good size
\qquad for sampling proportions. \qquad
\qquad

What's a good sample size then?????
\qquad

Assumptions and conditions to use the normal model for sampling proportions.

1. Independence Assumption - sampled values are independent of each other
2. Sample size n is large enough

These may be hard to check...so instead check the following conditions to use the normal model.

1. Randomization Condition: Randomization was used in the experiment, surveys to make representative samples 2. 10% condition: n must be no larger than 10% of the entire population (just ask if the entire population is 10 times the sample size or larger)
2. Success/failure condition: sample is big enough for us to expect at least 10 successes and 10 failures

$$
\begin{array}{ll}
\text { CBS survey } & \mathrm{np}=(808)^{*}(.45)=364 \text { successes } \\
& \mathrm{nq}=(808)^{*}(.55)=444 \text { failures }
\end{array}
$$

Example from page 418

Suppose that about 13% of the population is left-handed. 8 A 200-sea school auditorium has been built with 15 "lefty seats," seats that have the built-in desk on the left rather than the right arm of the chair. (For the righthanded readers among you, have you ever tried to take notes in a chair with the desk on the left side?)
Question: In a class of 90 students, what's the probability that there will not be enough seats for the left-handed students?

[^0]: ** Remember: a model is a model

