

When a random sample is drawn from any population with mean $(\boldsymbol{\mu})$ and standard deviation (σ), its sample mean has a sampling distribution with the same mean μ but the standard deviation is $\frac{\sigma}{\sqrt{n}}$
** no matter what population the random sample comes from, the shape of the sampling distribution is approximately normal as long as the sample size is large enough. The larger the sample used, the more closely the normal model approximates the sampling distribution for the mean.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
** When we don't know (population SD), we approximate it
\qquad with $S E(\bar{y})=\frac{s}{\sqrt{n}}$ sample standard deviation

This leads to problems. Model doesn't give correct results.

To resolve the issue, we have a different model for different degrees of freedom (df) \rightarrow called student's t-models \qquad

\qquad
\qquad
\qquad
\qquad
The t-model (solid curve) on 2 degrees of freedom has fatter tails than the
Normal model (dashed curve). So the 68-95-99.7 Rule doesn't work for
models with only a few degrees of freedom.
** Student's t models are unimodal and symmetric like normal models but for small sample size (df) the tails are fatter.

As df increases, t model \rightarrow Normal

A PRACTICAL SAMPLING DISTRIBUTION MODEL FOR MEANS
When certain assumptions and conditions ${ }^{2}$ are met, the standardized sample mean, \qquad

$$
t=\frac{\bar{y}-\mu}{S E(\bar{y})^{\prime}}
$$

\qquad
follows a Student's t-model with $n-1$ degrees of freedom. We estimate the standard deviation with

$$
S E(\bar{y})=\frac{s}{\sqrt{n}} .
$$

Conditions: Independence, Randomization, 10\%, nearly normal condition (data gives unimodal dist. Some skew of if sample large >= 40

ONE-SAMPLE t-INTERVAL FOR THE MEAN

When the assumptions and conditions ${ }^{3}$ are met, we are ready to find the confidence interval for the population mean, μ. The confidence interval is

$$
\bar{y} \pm t_{n-1}^{*} \times S E(\bar{y})
$$

where the standard error of the mean is $S E(\bar{y})=\frac{s}{\sqrt{n}}$.
The critical value t_{n-1}^{*} depends on the particular confidence level, C, that you specify and on the number of degrees of freedom, $n-1$, which we get from the sample size \qquad
\qquad
\qquad
\qquad

ONE-SAMPLE t-TEST FOR THE MEAN

The assumptions and conditions for the one-sample t-test for the mean are the same as for the one-sample t-interval. We test the hypothesis $\mathrm{H}_{0}: \mu=\mu_{0}$ using the statistic

$$
t_{n-1}=\frac{\bar{y}-\mu_{0}}{S E(\bar{y})} .
$$

The standard error of \bar{y} is $S E(\bar{y})=\frac{s}{\sqrt{n}}$.
When the conditions are met and the null hypothesis is true, this statistic follows a Student's t-model with $n-1$ degrees of freedom. We use that model to obtain a P-value.

of child on stretcher after cras
\longrightarrow Leading cause of death for people between 4-33 yr old

2006 --- 43,300 died in US

Speeding is a factor in 31% of all fatal accidents NHTSA

M. Singh

Residents concerned.
WHO Vehicles on Triphammer Road WHAT Speed $>30 \mathrm{mph}$ UNITS Miles per hour
WHEN April 11, 2000, 1 p.m
WHERE A small town in the A small town in the
northeastern United States
WHY Concern over impact on residential neighborhood

Triphammer Road, Ithaca, NY
\qquad

Policemen put a radar to let drivers know their speed \qquad

\qquad
\qquad
\qquad

What is the true mean speed of all vehicles on Triphammer Road? Does the mean speed of all cars exceed the posted speed limit? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Calculating from the data (see page 530):

$$
\begin{aligned}
& n=23 \mathrm{cars} \\
& \bar{y}=31.0 \mathrm{mph} \\
& \mathrm{~s}=4.25 \mathrm{mph} .
\end{aligned}
$$

The standard error of \bar{y} is

$$
\operatorname{SE}(\bar{y})=\frac{5}{\sqrt{n}}=\frac{4.25}{\sqrt{23}}=0.886 \mathrm{mph}
$$

The 90% critical value is $t^{*}{ }_{22}=1.717$, so the
margin of error is

$$
\begin{aligned}
M E & =t_{22}^{*} \times \operatorname{SE}(\bar{y}) \\
& =1.717(0.886) \\
& =1.521 \mathrm{mph} .
\end{aligned}
$$

he 90% confidence interval for the mean
peed is $31.0 \pm 1.5 \mathrm{mph}$
am 50% confident that the interal tram

Sesat: This was not r random sample of wou

Does the mean speed of all cars exceed the posted speed limit? One samplet teest tor the mean
want to know whether the mean speed of veni-
cles on Triphammer Road exceeds the posted
speed limit of 30 mph I have a sample of
23 car speeds on April 11, 2000
H_{0} : Mean speed, $\mu=30 \mathrm{mph}$
$H_{A}:$ Mean speed, $\mu>30 \mathrm{mph}$
\checkmark Independence Assumption: These cars
are a converience sample, but they were
selected so no two cars were driving nea
ach other, sol am justified in believing
hat their speeds are independert.
Randomization Condition: Although 1
to believe that it is a representative sample.

Nearly Normal Conaition: The histogram symmetric.

The conditions are satisfied, so 'll use a Stu-
ent's t-model with $(n-1)=22 d$ det
to do o one-sample t-test for the
mean.

$$
P \text {-value }=P\left(t_{22}>1.13\right)=0.136
$$

The P-value of 0.136 says that if the true mean speed of vehicles on Triphammer Road were 30 mph , samples of 23 vehicles can be expected to have an observed mean of at least $31.0 \mathrm{mph} 13.6 \%$ of the time. That P-value is not small enough for me to reject the hypothesis that the true mean is 30 mph at any reason able alpha level. I conclude that there is not nough evidence to say the average speed is too high.

