Chi-squared test for homogeneity

Post graduation activities of graduates from 4 colleges at an upstate NY University

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	379	305	243	125	1052
Grad School	186	238	202	96	722
Other	104	123	37	58	322
Total	669	666	482	279	2096

because class sizes different proportions are easier to compare

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	56.7%	45.8%	50.4%	44.8%	50.2
Grad School	27.8	35.7	41.9	34.4	34.4
Other	15.5	18.5	7.7	20.8	15.4
Total	100	100	100	100	100

We want to test whether the students' choices are the same across all four colleges?

Chi-squared test for homogeneity

- sameness

*Test to determine whether several populations are similar or same in some characteristics

Conditions:

Counted data condition

Independence Assumption

Randomization Condition (check only if you are generalizing results)

Expected cell frequency condition

df = (rows-1)(columns-1)

$$\chi^2 = \sum_{all \ cells} \frac{(Obs - Exp)^2}{Exp}$$

H₀: The distribution does not change from group to group

H_A: Groups do not have the same distribution

Follow up with chi-squared -> pvalue-> conclusion

Where are the expected values going to come from?

	Agriculture	Arts & Sciences	Engineering	Social Science	Total
Employed	335.777	334.271	241.920	140.032	1052
Grad School	230.448	229.414	166.032	96.106	722
Other	102.776	102.315	74.048	42.862	322
Total	669	666	482	279	2096

Γable 26.3 Expected values for the '06 graduates.

For example, overall, 1052, or about 50.2%, of the 2096 students who responded to the survey were employed. If the distributions are homogeneous (as the null hypothesis asserts), then 50.2% of the 669 Agriculture school graduates (or about 335.8 students) should be employed. Similarly, 50.2% of the 482 Engineering grads (or about 241.96) should be employed.

Follow with step by step example then practice.

•		

primethinker.com 2